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Abstract
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Symbolic methods play a crucial role in reasoning tasks such as program verification, theorem
proving, and constraint solving. These methods rely on heuristic-driven decision processes
to efficiently explore large or infinite state spaces. Traditional heuristics, while effective, are
manually designed and often struggle with generalization across different problem domains.
This dissertation introduces a deep learning-based framework to replace or augment heuristic
decision-making in symbolic methods, enabling adaptive and data-driven guidance.

The framework leverages Graph Neural Networks (GNNs) to learn structural patterns
from symbolic expressions, formulating decision problems as classification or ranking tasks.
We propose novel graph representations for Constrained Horn Clauses (CHCs) and word
equations, capturing both syntactic and semantic properties to facilitate effective learning.
Various GNN architectures, including Graph Convolutional Networks (GCNs) and Relational
Hypergraph Neural Networks (R-HyGNNs), are evaluated for their suitability in different
symbolic reasoning tasks.

We implement the framework in a CHC solver and a word equation solver, demonstrating
that learning-based heuristics can improve solver efficiency by guiding key decision processes
such as clause selection and branch selection. The dissertation also explores different strategies
for integrating trained models into solvers, balancing computational overhead with performance
gains through caching, hybrid heuristics, and selective model querying.

Experimental results show that our framework consistently enhances solver performance,
particularly in challenging problem domains. The findings suggest that deep learning can
significantly improve symbolic reasoning by learning adaptive heuristics, paving the way for
further integration of machine learning in formal methods.

Future research directions include extending the word equation solver, optimizing GNN
architectures, and expanding training data sources.
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1. Introduction

1.1 Overview

Analysis and verification of complex systems often require exploring a vast or
even infinite state space to ensure conformance with desired specifications [1, 2].
As these systems grow in complexity, exhaustively enumerating and checking
every possible configuration becomes infeasible due to the well-known phe-
nomenon of combinatorial explosion. This challenge has led researchers to
develop more efficient approaches, most notably the use of symbolic expres-
sions to represent large or infinite sets of states in a compact form. Symbolic
expressions, frequently embodied in logical or algebraic forms, effectively
encode multiple states and transitions within a single representation, reducing
the memory and computational resources required to handle complex systems.
Symbolic methods refer to a class of techniques that operate on symbolic ex-
pressions to explore and manipulate collections of states and transitions [3].
They harness the structure of symbolic expression, in particular formulas, to
prune infeasible paths or quickly detect contradictions, offering a more feasible
alternative to exhaustive enumeration. This makes them both space-efficient
and computationally powerful.

Symbolic methods rely on several fundamental techniques, including deduc-
tive reasoning and rewriting [4], which are also known as automated reasoning.
Deductive reasoning uses logical inference rules to derive conclusions from
given premises. For instance, resolution is a specific rule of inference used
within deductive reasoning that systematically merges clauses to eliminate
literals and detect contradictions when they arise. Rewriting simplifies complex
expressions through a set of predefined rules.

Typical applications of automated reasoning include program verification
and computer computer-assisted proofs in mathematics. For instance, in pro-
gram verification, the primary goal is to ensure that a program behaves correctly
according to its specifications. The reachable states of a program, such as the
values of its variables, its control-flow location, and other runtime conditions,
are captured as symbolic expressions rather than enumerated explicitly. There-
fore, the program’s execution paths can be systematically expressed symboli-
cally and explored. Rewriting can simplify symbolic expressions. Deductive
reasoning can propagate constraints across symbolic states.

Symbolic methods offer significant advantages for handling large or infinite
state spaces, but they also present several challenges [3]:

1. Complex Representations: Symbolic expressions can become very large

or intricate, especially when representing complex systems or diverse
data types. Managing these expressions efficiently is often non-trivial.
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2. Theory Handling: Many real-world problems involve multiple theories
(e.g., arithmetic, bit-vectors, arrays), so solvers must handle combinations
of logical theories consistently. Extending resolution, rewriting, or other
symbolic algorithms to work across different theories can be highly
complex.

3. Scalability: Although symbolic techniques can be more efficient than
exhaustive enumeration, they still face exponential worst-case scenarios.
As systems grow, finding solutions or proofs can remain intractable
without careful optimization or heuristics that guide the search process.

In practice, the typical backend tools of symbolic methods include Automatic
Theorem Provers (ATPs) [5], SAT/SMT solvers [6, 7], and CHC solvers [8].

ATPs automatically establish the validity of logical statements, operating
within formal systems to derive proofs without human intervention. SAT
solvers determine the satisfiability of propositional logic formulas. SMT solvers
extend SAT solving by incorporating background theories such as arithmetic
and equality reasoning. CHC solvers address satisfiability problems within a
fragment of first-order logic, particularly useful in program verification and
synthesis.

To handle complex representations, many tools represent formulas internally
in compact data structures such as Directed Acyclic Graphs (DAGs) and Binary
Decision Diagrams (BDDs) [9], allowing shared subexpressions and avoiding
repetitive computation.

To handle different theories, SMT solvers extend SAT solving by delegat-
ing theory-specific checks to specialized decision procedures. For theories
with disjoint signatures, the Nelson—Oppen method [10] can combine decision
procedures by exchanging equalities. Problems (especially those involving
loops, recursion, and other inductive structures) are encoded as Horn clauses
augmented with constraints from a background theory. CHC solvers then han-
dle them using specialized algorithms that accommodate various background
theories.

Symbolic methods can explore search spaces systematically. However, they
may fail to yield useful results within a reasonable timeframe. To improve
the scalability, selecting appropriate heuristics is crucial and often application-
dependent. This dissertation focuses on building a general learning-based
framework to construct the heuristics.

1.2 Motivating Examples

Example 1. Saturation-based theorem proving (e.g., E [11, 12] and Vam-
pire [13]) is one of the most common and widely used approaches in first-order
logic (FOL) theorem proving. At the heart of this approach is the given-clause
algorithm, which divides the working set of clauses into two groups: an active
set containing processed clauses and a passive set containing clauses that have
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been generated but not yet used for inference. The prover repeatedly selects
a clause from the passive set based on heuristics such as clause weight, term
complexity, or relevance to the proof goal. This selected clause is then moved
to the active set, where it undergoes inference operations such as resolution or
superposition with existing active clauses. The newly generated clauses are
added back to the passive set, and redundant or subsumed clauses are removed
to maintain efficiency. This process iterates, applying inferences until no new
clauses can be derived. If the empty clause appears, the theorem is proved;
otherwise, the proof attempt fails.

At each iteration, clause selection is crucial for controlling the proof search
and avoiding unnecessary inferences. Various heuristics are proposed to guide
this selection based on features of clauses such as age, weight, size, or relevance
to the proof goal [14]. The heuristics can be predefined or learning-based. Pre-
defined heuristics include first-in/first-out, symbol counting, etc. In recent years,
there have been many successful attempts at learning-based heuristics [15]. For
instance, Deepire [16] uses recursive neural networks to classify the clauses
based only on their derivation history. ENIGMA [17] uses both Gradient Boost-
ing Decision Trees (GBDTs) [18] and Graph Neural Networks (GNNs) [19] to
select the clauses based on the syntax trees of clauses and variable statistics.

Example 2. Many modern SAT solvers, such as MiniSat [20], Glucose [21],
and Kissat [22], are based on the Conflict-Driven Clause Learning (CDCL)
algorithm [23, 24]. The CDCL algorithm begins by selecting an unassigned
variable and assigning it a truth value. It then performs unit propagation
to deduce implied assignments. This propagation continues until no further
unit clauses remain or a conflict is encountered. If no conflict occurs, the
solver checks whether all variables have been assigned. If so, the formula is
satisfiable. Otherwise, if a conflict arises, the solver analyzes the sequence of
assignments leading to the conflict. Using an implication graph, it identifies the
root cause and derives a new clause (the learned clause) to prevent the same
conflict in future searches. Instead of backtracking to the most recent decision,
the solver performs non-chronological backtracking, known as backjumping,
directly to the decision level responsible for the conflict. This avoids redundant
exploration and accelerates the search. The process iterates until the solver
either finds a satisfying assignment or proves the formula unsatisfiable. To
escape unproductive regions of the search space, CDCL solvers periodically
restart the search while retaining learned clauses, balancing exploration and
exploitation.

CDCL involves multiple decision problems, such as selecting an unas-
signed variable for branching, determining which learned clauses to prune,
and deciding when to restart. Branching variable selection has been exten-
sively studied, with many predefined heuristics proposed over the decades [25].
One such heuristic, Exponential Variable State-Independent Decaying Sum
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(EVSIDS) [24], assigns scores to variables based on the number of conflicts
they have participated in, with more recent conflicts weighted significantly
higher than past conflicts. In recent years, learning-based approaches have
gained attention. For instance, NeuroSAT [26] periodically resets EVSIDS
scores based on the predictions of a message-passing neural network. For
restarting heuristics, Liang et al. [27] propose a machine learning-based restart
policy that predicts the quality of the next learned clause by analyzing the
history of previously learned clauses.

Summary of Examples. Beyond the previously mentioned examples, nearly
all backend tools of symbolic methods incorporate multiple heuristic-driven
decision processes. These decision processes can be viewed as functions,
which may either be predefined or dynamically adapted through learning-based
approaches.

In recent years, with the remarkable advancements in deep learning [28],
there has been a growing amount of research dedicated to integrating deep
learning techniques into symbolic reasoning tools. These efforts aim to enhance
decision-making processes by leveraging learned representations, enabling
adaptive heuristics that outperform static strategies. This paradigm shift has
demonstrated significant potential in improving the efficiency of symbolic
reasoning systems. However, the heuristics presented in these studies are
tailored to specific cases and do not generalize well across different problem
domains.

This dissertation presents a general deep learning-based framework that
provides a complete pipeline for training deep learning models to replace the de-
cision processes in symbolic methods. By making these processes data-driven,
the framework eliminates the need for manually specifying domain-specific
knowledge. We apply our framework to the CHC solver Eldarica [29] and the
word equation solver DragonLi (Paper III) to demonstrate its generalization
capability and effectiveness.

1.3 Deep Learning

The remarkable achievements of deep learning are exemplified by systems like
AlphaGo [30] in the game of Go, AlphaFold [31] in biology, and ChatGPT [32]
in natural language processing. In this dissertation, deep learning refers to
neural networks with multiple layers.

The success of these applications is underpinned by the Universal Approxi-
mation Theorem [33], which asserts that feedforward neural networks with at
least one hidden layer can approximate any continuous function to a desired
degree of accuracy, given sufficient parameters. This theorem provides a theo-
retical foundation for the versatility of neural networks in modeling complex,
non-linear relationships inherent in various data types. However, this is not the
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only reason why deep learning works so well. For instance, as an approxima-
tor, Support Vector Machines (SVMs) [34] with certain kernels, such as the
Radial Basis Function (RBF) [35], polynomial kernels, and specific dot prod-
uct kernels, have also been demonstrated to possess universal approximation
capabilities.

Another key to the success of deep learning is that it works as an effective
automatic feature extractor [36, 37]. Through the training process, it learns to
identify and represent abstract features from raw data without manual interven-
tion. This capability allows it to adapt to diverse tasks, from strategic game
playing and scientific discovery to generating human-like text, by capturing
intricate patterns and structures within the data.

Deep Learning in Symbolic Methods. In symbolic methods, deep learning
serves two primary roles: as an approximator for classification and regression
tasks and as a feature extractor for symbolic expressions. The main motivation
for integrating deep learning is its ability to autonomously extract abstract
features from symbolic expressions, particularly formulas. This allows the
model to learn essential patterns for a given task without requiring explicit
domain-specific knowledge.

For example, consider designing a heuristic to guide clause selection in
saturation-based ATPs. A common domain-specific heuristic selects clauses
based on statistics from the passive set, favoring smaller clauses first, as they
are more likely to resolve to the empty clause quickly.

When deep learning is used as a feature extractor, we assume it can learn
abstract features (properties) such as the likelihood that a clause will lead to a
conflict. A downstream classifier can then leverage these extracted features to
determine which clause to select more efficiently.

However, learning such useful abstract features requires well-designed and
tailored training data and tasks for specific decision processes. A key question
arises: Assume that the decision processes in symbolic methods take formulas
as input and produce decisions as output.

Can we generalize the working pipeline so that decision processes can be
systematically improved by deep learning within a unified framework?

This leads to our research questions.

1.4 Research Questions

Research Question 1 (RQ1): What are good encodings of symbolic decision
processes as training tasks, so that deep learning is effectively able to learn
decision heuristics?

The inputs to the training task are symbolic expressions, but they can in-
corporate various types of information. For example, in clause selection for
saturation-based ATPs, the input may consist solely of the clauses in the passive
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set or include all clauses from both the passive and active sets. Additionally,
the input can be enriched with metadata, such as the age of each clause.

The structure of the training task depends on the output format. If the goal is
to select a single clause from a set, we have two approaches. One option is to
treat each clause individually by performing binary classification or regression
tasks multiple times to assign scores and then rank the clauses accordingly.
Alternatively, we can consider all clauses simultaneously and perform a single
multi-class classification.

Another aspect of deciding what is the best encoding of a decision process
in symbolic methods into training tasks is where to collect the training data.
Typically, training data is generated from the traces of successfully solved
problems. However, a single problem can have multiple solution traces within
the same solver, and different solvers may produce distinct traces. The source
and quality of the training data significantly affect the performance of the
trained model.

Research Question 2 (RQ2): What is the most effective format for represent-
ing formulas in deep learning?

Formulas are typically stored in text-based formats, such as SMT-LIB and
TPTP. However, most solvers first transform these formulas into structural
representations, such as Abstract Syntax Trees (ASTs) or Directed Acyclic
Graphs (DAGS), to better capture the relationships between elements. This
transformation aligns with the core principles of symbolic methods, which
operate on and manipulate symbols while preserving logical or algebraic cor-
rectness. Consequently, when applying deep learning to extract features from
formulas, the prevailing approach is to represent them as graphs.

Despite this, the optimal way to structure formulas as graphs for deep
learning models to effectively extract features remains an open question, as
different representations impact both efficiency and learning capabilities. For
example, consider the formula (x —y) A (x — z). One question is how to
represent the identical symbol x. Merging occurrences of x in a DAG can reduce
redundancy but may obscure some structural details. Alternatively, introducing
a hyperedge to explicitly represent that one element implies multiple others
can better capture multi-variable relationships, but this approach increases
processing complexity.

Research Question 3 (RQ3): Which deep learning technique is best suited for
feature extraction from formulas?

With recent breakthroughs in natural language processing, we cannot rule
out the possibility that large language models may capture the semantic fea-
tures of symbolic expressions more accurately through textual representations.
However, as previously discussed, modern solvers primarily rely on operating
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on the relationships between symbols. Therefore, this thesis focuses on the
case where symbolic expressions are represented as graph-based inputs.

Graph neural networks (GNNs) are specialized neural networks designed
to process data structured as graphs. They are good at capturing complex
relationships between entities represented as nodes and edges. For graph-
based inputs, GNNs serve as the most effective feature extractors. There
are various types of GNNs, such as Graph Convolutional Network (GCN),
Graph Isomorphism Network (GIN), and Graph Attention Network (GAT).
The choice of an appropriate GNN architecture as a feature extractor depends
on the structural characteristics of the input graph. For instance, GCN is
computationally efficient for homophilous graphs (where connected nodes
have similar features) due to its simple aggregation mechanism, that averages
neighboring node features. In contrast, GAT is more suitable for heterophilous
graphs (where neighboring nodes have distinct features) as it learns adaptive
weights for neighbors through an attention mechanism, allowing it to capture
complex relationships.

Research Question 4 (RQ4): What are the methods for integrating the trained
model into algorithms?

Under the assumption that prediction data and training data follow similar
distributions, a condition typically achieved through large-scale training, exter-
nal models may generate more effective heuristics than predefined rules, as they
are explicitly optimized for the target data. However, practical implementations
face inherent latency challenges. Querying external models involves computa-
tional overhead from converting symbolic representations into graph structures
for model input and performing matrix operations during inference, making it
significantly slower than predefined heuristic operations. As a result, an impor-
tant consideration is how to leverage these models effectively while minimizing
overhead to achieve the greatest possible performance improvement.

To address this, three principal strategies can be explored. First, randomness
can be introduced by defining parameters that probabilistically determine when
the model should be queried. Second, the model can be combined with existing
heuristics, selectively invoking it based on real-time information. Third, the
model can be queried only once at the beginning, as the initial search direction
often has the greatest impact on the final outcome. These strategies help balance
efficiency and effectiveness, ensuring that model-based heuristics improve
performance without introducing excessive computational overhead.

1.5 Learning-Based Framework

Figure 1.1 provides an overview of the learning-based framework. The input
consists of a set of problems used as training data, and the output is a deep
learning model incorporating GNNs. Ultimately, the trained model is employed
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to either replace or collaborate with a solver’s decision-making process, guiding
the solving procedure for unseen problems.

The process begins by using one or more solvers to solve the problems in
the training dataset. For each solved problem, one or multiple traces lead to the
solution. Training data is then constructed from these traces, where symbolic
expressions are encoded as graphs, and labels are assigned based on the most
efficient trace—typically the one requiring the fewest iterations to reach a
solution.

Once the training data is prepared, we train the model. The end-to-end
model generally consists of two components: (1) a feature extractor based on
GNNs, and (2) an approximator, which performs classification or regression
tasks to generate the final decision.

When encountering new, unseen problems, the solver encodes the current
states or traces as a graph representation and queries the trained model to guide
decision-making. This process continues iteratively until a solution is found or
a timeout occurs.

Although a problem-solving trace may contain extensive information, not all
of it is necessary for learning. In other words, the trained model does not need
to fully control the guiding process. For example, in clause selection for ATPs,
rather than dictating the best clause to choose, the model can complement
existing heuristics, such as those based on clause age, by providing additional
information. For instance, the model can numerically characterize the “shape”
of each clause, assigning it a weight that influences the selection process. This
way, the model acts as an auxiliary source of information rather than directly
controlling the selection.

| Training stage

|4®’2

I
I
Graph
| Problems Solvers Solved representations :
I — with labels |
| Training data

Model with GNNs

! .
| Prediction stage Guide

! 7 o
: Problems Solver

I

I

]

Evaluation data

Representations

Figure 1.1. Workflow diagram for the learning-based framework.

Instances of the Framework. We instantiate the framework in two specific
scenarios:
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1. The Extended CHC Solver Eldarica [29]: Eldarica uses a Counterexample-
Guided Abstraction Refinement (CEGAR)-based algorithm [38]. It in-
corporates various decision processes and provides a rich environment of
traces for exploring how to adapt our framework. For instance, it solves
CHCs by constructing an Abstract Reachability Graph (ARG). At each
iteration, a clause must be selected for expansion in the ARG, allowing
us to guide the clause selection. Moreover, during the CEGAR process,
Craig interpolation generates predicates that represent system abstrac-
tions. This process relies on heuristics to focus on the most relevant parts
of a proof. The selection of generated predicates that effectively capture
essential system properties is also crucial.

2. The Word Equation Solver DragonLi [39]: In the context of SMT solvers
dealing with string theory, solving word equations is one of the fun-
damental challenges. We have developed a calculus based on Nielsen
transformations [40] to solve word equations. This approach recursively
applies a set of inference rules to simplify and split the equations until an
trivial solution is reached. At each iteration, decisions regarding which
equation to branch on and which branch to explore first significantly im-
pact performance. We chose this scenario because deep learning has not
yet been applied to word equation solving. Moreover, the word equation
problem is known to be NP-hard [41], so it heavily relies on heuristics,
making it a suitable testbed for our framework.

1.6 Thesis Outline

The rest of this dissertation is organized as follows: Chapter 2 provides the
necessary background concepts essential for understanding our framework. In
Chapter 3, we delve into the details of our framework by addressing the four
research questions. Chapter 4 summarizes the contributions of both published
and under-reviewed papers related to this work. Finally, Chapter 5 concludes
our research and proposes several future research directions in this domain.

23






2. Background

In this chapter, we introduce key concepts, including constrained Horn clauses,
word equations, minimal unsatisfiable subsets, and deep neural networks. For
each topic, we first provide the necessary background, then present its formal
definition, and finally explain its relevance to this dissertation.

2.1 Constrained Horn Clauses

Classical Horn Clauses were introduced by mathematician Alfred Horn in the
1950s [42]. They are restricted to at most one positive literal and became foun-
dational for logic programming languages like Prolog [43]. Constrained Horn
Clauses (CHCs) extend classical Horn Clauses by incorporating constraints
from various domains, such as integers and real numbers. CHCs provide a
natural way to express the properties of programs, especially those involving
loops and recursion, making them highly useful in program verification.

2.1.1 Definitions

To formally define CHCs, we assume a fixed signature A = (S, R, F,X) and
a unique structure M over A as the background theory where S, R, F, X
are sorts, relations, functions, and variables, respectively, and M is a fixed
interpretation of the symbols in the signature A. In this dissertation, we restrict
the background theory to Linear Integer Arithmetic (LIA), following the SMT-
LIB standard [44]. Additionally, we assume a set of relation symbols R,
disjoint from R, which will be used to define the head and body of clauses. A
closed formula is a logical formula that contains no free variables. A constraint
formula is a special type of formula that belongs to the fixed background theory.

Definition 1 (Constrained Horn Clauses) Given signature A and the relation
symbol set R, a Constrained Horn Clause (CHC) is a closed formula in the
form

Vx.H< BiAByA\---AB, 2.1

where X is a vector of variables; H is either false or an atomic formula and
B1,B3, ..., B, are atomic formulas or constraint formulas over A. An atomic
Sformula is a formula in form p(ty,...,t,) where p € R¢. We call H the head
and B1,B>,...,B, the body of the clause, respectively.
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For simplicity, we often omit the quantifiers VX when writing clauses. A
CHC with an empty body (n = 0) is called a fact. A CHC is linear if its body
contains at most one atom; otherwise, it is non-linear.

We use the Fibonacci function as an example to illustrate how CHCs encode
program logic. The logic of the Fibonacci function can be written as

fib(0) =0
fib(1) = 1
fib(n) =fib(n—1)+fib(n—2), forn>1

Its CHC encoding can be expressed as

F(0,0) < true
F(1,1) < true
F(x,y) < x>1Ax;=x—1Axp=x—2
AF (x1,y1) NF (x2,y2) ANy =y1 +y2

where the predicate F (x,y) indicates that y is the Fibonacci number correspond-
ing to index x.

To encode assertions such as “the Fibonacci function does not return negative
numbers”, we introduce another predicate, false, which represents an assertion
violation. The CHCs for the assertion are:

false + F(x,y) Ay <0

This clause says: “There are no negative Fibonacci numbers”.

Solving CHCs means to search for interpretations of the relation symbols R¢
that satisfy the CHCs, assuming that all background symbols from A are
interpreted by the fixed structure M:

Definition 2 (Satisfiability of CHCs) A Constrained Horn Clause (CHC) h is
satisfiable if there exists a structure M¢ = (U, I¢) that provides an interpreta-
tion for the extended signature Ac = (S, RUR¢,F,X) such that:
1. The interpretation Ic agrees with the original interpretation I on the
symbols in the signature A.
2. The structure M satisfies the CHC h, meaning that the assigned mean-
ings of functions, relations, and variables make the clause hold true.
A set C of CHC:s is satisfiable if there is an extended structure M simultane-
ously satisfying all clauses in C.

SAT Example: Consider a model:
Fx,y) =x>0Ay>0

Replacing F with this formula will make all clauses valid which means the
system is satisfiable (SAT).
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2.1.2 Solving CHCs

A CHC system consists of a set of CHCs. Techniques for solving CHC sys-
tems include symbolic execution, abstract interpretation, and Counterexample-
Guided Abstraction Refinement (CEGAR) [38], among others. These tech-
niques are often used in combination rather than in isolation. Modern CHC
solvers integrate multiple approaches to enhance efficiency and precision. For
example, the CHC solver Eldarica [29] contains both CEGAR- and symbolic
execution-based algorithms.

The CEGAR-based algorithm uses predicates to represent system abstrac-
tions. Initially, the abstraction is coarse, typically it is generated by a single
trivial predicate such as true or no predicate. The solver checks the satisfiability
of the clauses under this abstraction. If it finds a counterexample trace leading
to an undesirable state (e.g., a violation of the CHC system), it determines
whether the trace is spurious. A spurious counterexample is one that violates
the abstracted system but not the concrete system. If the counterexample is spu-
rious, the solver refines the abstraction by introducing more precise predicates.
This process repeats until either a real violation is identified or the abstraction
becomes precise enough to prove the CHC system’s satisfiability.

In the symbolic execution-based algorithm (Paper II), a clause ¢ with no
atomic formula in its body is selected from a CHC system C. The atomic
formula in the head of c is then replaced in the remaining clauses C \ ¢ with the
constraint formula in ¢’s body, generating new clauses to update the system.
This process, akin to resolution, repeats until either a contradiction is found or
the CHC system is proven to hold.

2.1.3 Learning-Based Methods

In recent years, learning-based techniques have increasingly been introduced for
solving CHCs. For example, Code2Inv [45] proposed an end-to-end learning
framework for synthesizing loop invariants, which are crucial for solving
CHC:s [8]. Luo et al. [46] cast CHC solving as a symbolic classification task
and solve it by learning partitions of generalized reachable states to derive CHC
interpretations. ROPEY [47] trains a neural network to capture co-occurrences
of literals in lemmas over historical runs of the CHC solver SPACER [48] to
guide the inductive generalization process.

This dissertation investigates various aspects of learning-based methods for
CHC s, including graph representations of CHCs, the ability of Graph Neural
Networks (GNNs) [19] to learn from these representations, the most suitable
GNN architectures for capturing structural information of CHCs such as control
and data flow, and the integration of learned heuristics into a CHC solver.
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2.2 Word Equations

A word equation is an equation of the form u = v where u and v are strings
composed of variables and constants (fixed letters from a given alphabet). The
word equation problem asks whether there exist assignments of concrete strings
to variables such that the equation holds. If such assignments exist, the equation
is satisfiable, and the assignments are returned; otherwise, it is unsatisfiable.

For instance, consider the word equation Xab = YaZ, where a and b are
letters, and X, Y, and Z are variables ranging over strings of these letters.
This equation is satisfiable because assigning X = a, Y = a, and Z = b yields
aab = aab.

The earliest study related to word equations was conducted by Axel Thue [49]
who investigated properties of word transformations and substitutions, laying
the foundation for what would later become combinatorics on words [50].
Makanin [51] proved that the satisfiability of word equations is decidable. To-
day, the exact complexity of the problem remains an open question, but it is
known to be NP-hard and in PSPACE [41].

2.2.1 Definitions

To formally define a word equation system, we assume a finite, non-empty
alphabet ¥ and denote by X* the set of all strings (or words) over £. We work
with a set I of string variables, which range over words in £*, and use € to
denote the empty string. String concatenation is represented by -, though we
often write uv as shorthand for u - v in examples.

The syntax of word equations used in this dissertation is defined as follows:

Formulae ¢ ::= true | e A @, Words w =€ | t-w,

Equations e ::=w =w, Termst =X | c

where X € I represents variables and ¢ € X represents constants. In this
dissertation, a word equation system refers to a set of word equations to be
solved simultaneously.

Definition 3 (Satisfiability of a Word Equation) A word equation e is satis-
fiable (SAT) if there exists a substitution ©t : ' — L* such that, when each
variable X € T in ¢ is replaced by ©(X), the equation e holds.

Definition 4 (Satisfiability of a Word Equation System) A word equation sys-
tem ¢ is satisfiable if all equations in ¢ are satisfiable.

Definition 5 (Linearity of a Word Equation) A word equation is called lin-
ear if each variable occurs at most once. Otherwise, it is non-linear.

Note that this definition of linearity applies only to single-word equations. In
a word equation system with multiple equations, a variable may still appear
multiple times across different equations, even if each individual equation is
linear.
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2.2.2 Solving Word Equations

One of the earliest insights into solving word equations comes from Levi’s
Lemma [40] (also known as the Nielsen transformation in group theory) [52].
This combinatorial lemma states that if a concatenation of two strings equals
another concatenation (if u-v = x-y), then u is a prefix of x, or vice versa.
In practical terms, it implies that for any equation U =V (with U and V
sequences of constants and variables), one can compare the prefixes of U and
V to systematically break the problem into cases:

1. If both sides start with different constant letters, the equation is unsatisfi-
able.

2. If one side starts with a constant letter a and the other with a variable
X, then in any solution X must begin with a or be equal to €. We can
assign X = aX’ (for a fresh variable X”) or X = € and reduce the equation
accordingly.

3. If both sides start with variables (say X and Y), there are two sub-cases by
Levi’s lemma: either X’s substitution is a prefix of Y’s, or vice versa. For
example, if the equation is X - o« =Y - B (where «, 8 are the remaining
parts), then either we set Y = XY’ (meaning X and Y start with the same
string so we shorten Y) or X =Y X’. Each case yields a simpler equation to
solve (with one variable occurrence effectively shortened or eliminated).

Using these case distinctions, one can perform a backtracking search for a
solution. The search builds a tree of subproblems, where each node is a simpler
word equation derived by one of the above prefix cases. However, ensuring
termination in the general case is non-trivial. Naive backtracking can loop or
expand infinitely because variables can substitute arbitrarily long strings.

The first general decision procedure for word equations was given by
Makanin [51]. At a high level, it repeatedly applies transformations simi-
lar to the prefix-case analysis above, but in a controlled way that avoids infinite
loops.

Another approach for solving word equations is compression-based algo-
rithms pioneered by Plandowski [41]. The key idea is to represent long inter-
mediate strings implicitly to avoid exponential blow-up. Instead of explicitly
constructing potentially huge solution words, the algorithm works on a com-
pressed representation. Artur [53] further refined the recompression approach
based on local modification of variables and iterative replacement of pairs of
letters appearing in the equation with a “fresh” letter.

In practice, modern string constraint solvers and SMT (Satisfiability Modulo
Theories) solvers implement their own methods to deal with word equations,
often drawing on the theoretical insights above with additional techniques such
as length constraints and automata to prune the search space [54, 55]. Many
leading solvers such as Z3 [56] and cvc5 [57] are incomplete for proving the
unsatisfiability of word equations.
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2.2.3 Learning-Based Methods

SMT solvers like Z3 [56] and cvc5 [57] include dedicated procedures for the
theory of strings, which handle constraints over string variables (e.g. word
equations, substring operations, regex membership). Some of them use deep
learning methods to guide their general solving process instead of optimizing a
particular field of problems such as word equations. For instance, Piepenbrock
et al. [58] use a GNN to guide the selection of quantified formulas and term
instantiations during solving. At each step, the network scores all candidate
instantiations, replacing or augmenting cvcS’s built-in heuristics. This was
trained on proof logs so that the network learns instantiation choices that tend
to lead to proof. While not specific to strings, it shows deep learning integration
in an SMT solver’s workflow.

This dissertation presents the first application of deep learning to guide word
equation solving. We develop a solver, DragonLi, that integrates a GNN into
the solving process. Built upon the classic Nielsen transformation, it leverages
a GNN to predict the optimal branch to explore first. Each word equation is
encoded as a graph, and the GNN models branch selection as a multi-class
classification problem.

2.3 Minimal Unsatisfiable Subsets

A Minimal Unsatisfiable Subset (MUS) is a minimal set of constraints (or
clauses) from an unsatisfiable formula that is itself unsatisfiable, but becomes
satisfiable if any constraint from the set is removed. MUS plays a crucial
role in several domains, particularly in constraint solving and formal verifica-
tion [59]. For instance, in MaxSAT solvers, finding an MUS helps determine
the smallest subset of constraints responsible for infeasibility, guiding optimiza-
tion techniques to resolve conflicts. In software verification, it helps pinpoint
inconsistencies in system properties.

Definition 6 (Minimal Unsatisfiable Subset (MUS)) Let ¢ be a set of formu-
las such that ¢ is unsatisfiable. A subset ¢' C ¢ is called a Minimal Unsatisfi-
able Subset (MUS) if it satisfies the following conditions:

e Unsatisfiability: ¢’ is unsatisfiable.

e Minimality: For every proper subset ¢" C @', 9" is satisfiable, i.e.,

Vo' C o', ¢" is satisfiable.

An unsatisfiable formula may have multiple distinct MUSes.

In this dissertation, we study the MUSes of CHCs and word equations.
Identifying MUSes in both CHC and word equation systems allows solvers
to focus on critical constraints and eliminating redundant computations. To
train a model that learns to recognize MUSes, we incorporate single, union,
and intersection of MUSes as training data.
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Formally, let ¢ be a finite set of constraints (such as CHCs or conjunctive
word equations), and assume that ¢ is unsatisfiable.

Definition 7 (Single MUS) A Single MUS of ¢ is any minimal subset ¢’ C ¢
such that:

e ¢/ is unsatisfiable.

e Any strict subset ¢" C ¢’ is satisfiable.

Definition 8 (Union MUS) Let M = {¢{,95,...,¢.} be the collection of all
MUSes of ¢. The Union MUS is defined as:

k
UnionMUS(M) = ] ¢;.
i=1

This union represents the combined constraints of multiple MUSes, which may
not be an MUS.

Definition 9 (Intersection MUS) Let M = {¢{,95,...,9,} be the collection
of all MUSes of ¢. The Intersection MUS is defined as:

IntersectionMUS(M) = ] ¢/

This intersection captures the core constraints that appear in all MUSes, ensur-
ing that it remains an unsatisfiable set. However, it may not be an MUS.

2.4 Deep Neural Networks

To introduce GNNs, we first need to recall the main ideas of its basic build-
ing blocks: Multi-Layer Perceptrons (MLPs) [60], and the backpropagation
mechanism, which is the core concept of deep learning.

A MLP is a universal function approximator consisting of multiple layers of
interconnected neurons. A neuron applies a linear transformation to an input
vector by multiplying each element by its corresponding weight and computing
the weighted sum of the inputs. A bias term is then added to this sum, and the
result is passed through an activation function to introduce non-linearity. The
output of each layer is either propagated to the next layer or used as the MLP’s
output.

Formally, given an input vector x € R", the output of the first layer is
computed as:

2 =act(W'x+bY), (2.2)

where W! € R"™*" is the weight matrix, b' € R™ is the bias vector, and act(-)
is an activation function such as ReLU [61] (ReLU(x) = max(0,x)) or Sig-
moid [62] (Sigmoid(x) = 1/(1+e™%)).
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This process is repeated for each hidden layer / =2,...,L — 1, leading to the
final output computed as:

$ = act(WhzE1 - bh). (2.3)

The backpropagation algorithm minimizes the loss (difference) between the
expected output ¥ and the actual output y using a loss function, such as squared
error D = |y — | and binary cross-entropy D = —[y log($) + ((1 —y)log(1 —
9))]. The MLP parameters (weights and biases) are updated by computing the
gradients of the loss function with respect to these parameters.

Formally, given a training pair (x,y) with x € R” and y € R, we initialize an
MLP with random weights w € W and biases b € B. The forward propagation
computes ¥ using Equations 2.2 and 2.3. The weights and biases are updated
using gradient descent:

oD oD

where 1 € [0, 1] is the learning rate which determines the step size taken in the
direction of the gradient during optimization. The D is a loss function. The
trained MLP with optimized parameters serves as the final model.

With backpropagation, an MLP can approximate any real-valued continu-
ous function to an arbitrary degree of accuracy, given sufficient neurons and
appropriate weights [33].

2.4.1 Graph Neural Networks

A Graph Neural Network (GNN) [19] consists of Multi-Layer Perceptrons
(MLPs) with a special structure, specifically designed to process graph-structured
data with nodes and edges. A GNN takes a set of typed nodes and edges as
input and produces a set of feature representations (vectors of real numbers)
associated with the properties of the nodes. We refer to these as node represen-
tations.

The Message-Passing based GNN (MP-GNN) [63] is a type of GNN model.
It utilizes an iterative message-passing algorithm in which each node in the
graph aggregates messages from its neighboring nodes to update its own node
representation. This mechanism assists in identifying the inner connections
within substructures, such as terms and atoms, in graph-represented formulas.

Formally, let G = (V, E) be a graph, where V is the set of nodes and E is the
set of edges. Let x,, be the initial node representation (a vector of random real
numbers) for node v in the graph, and let N, be the set of neighbors of node v.
An MP-GNN consists of a series of T message-passing steps. At each step ¢,
every node v in the graph updates its node representation as follows:

Hy =0 (pr({H, " | u € Ny Y)Y, (2.5)

where A, € R" is the updated node representation for node v after ¢ iterations.
The initial node representation, 4’ is usually derived from the node type and
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given by x,. The node representation of u in the previous iteration t — 1 is /1,
and node u is a neighbor of node v. The p; : (R”)‘NV‘ — R" is a aggregation
function with trainable parameters (e.g., a MLP followed by sum, min, or
max) that aggregates the node representations of v’s neighboring nodes at the
t-th iteration. The ¢, : R” — R" is a function with trainable parameters (e.g.,
a MLP) that takes the aggregated node representation from p; and the node
representation of v in previous iteration as input, and outputs the updated node
representation of v at the ¢-th iteration. MP-GNN assumes that a node can
capture local structural information from neighbors ¢ steps away by updating
the node representation using aggregated representations of the neighbor nodes.

The final output of the MP-GNN could be the set of updated node represen-
tations for all nodes in the graph after 7 iterations. These node representations
can be used for a variety of downstream tasks, such as node classification or
graph classification.

The GNN definition in Equation 2.5 is abstract. It can be instantiated to
different types of GNNs. For instance, the node representation of 7-th layer for
Message Passing Neural Networks (MPNN5s) [63] is

Hy=U R, Y My R ew), (2.6)

ueNy

where M, and U, are message updating function and vertex update function
respectively. The e, is the edge feature for the edge between v and u. The h0 =
Xy is the initial feature vector. The summation for all updated representation
from M; is the aggregation function.

The node updating function of MPNNs can be abstracted to

H, = ¢" (R p ({0 (1Y ew)lu € N, YY), Q2.7)

where p is the summation function for all neighbor of v, and ¢ and ¢* are
message update function M; and U, respectively.

Graph Convolutional Networks (GCNs) [64] are also used in our experiments.
Their node updating function is

h@:a( ) lwfhgl), (2.8)

ueN,U{v} Cvu

where W' is a trainable weight matrix applied to transform node representations.
The normalization factor c,, is typically defined as ¢, = \/|N,| - /| Nu| to
ensure numerical stability. The activation function ¢ is a ReLU function. The
aggregation function sums the normalized representations of the neighbors and
the node itself, followed by a transformation with W’.

2.4.2 Learning Symbolic Expressions by GNNs

GNNs s have recently been explored as a powerful tool for learning structural
features from symbolic expressions in various solvers. By encoding logical
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formulas, proof states, or program structures into graph representations, GNNs
help improve heuristics, decision-making, and efficiency in automated reason-
ing.

Graph-Q-SAT uses a GNN-based deep Q-learning approach to learn branch-
ing heuristics for a CDCL SAT solver, reducing search iterations and improving
generalization to larger instances [65]. Bansal et al. [66] model higher-order
logic formulas as graphs (instead of trees) and use GNNs to encode conjectures
and premises for guiding proof search for a neural theorem prover (Deep-
HOL) [67]. Hila et al. [68] apply a GNN to learn representations of SMT
formulas (encoded as graphs) for per-instance solver portfolio selection.

In this dissertation we also use GNN to extract features for graph repre-
sented CHCs and word equations. In particular, we introduced a GNN called
R-HyGNN to handle graph with hyper-edges. Its updating rule for node repre-
sentation at time step ¢ is defined as

W, =ReLU(Y. Y Wi, [[{h, " |uc{N"uv}}), (2.9)
reR pep;

where ||{-} means concatenation of all elements in a set, r € R = {r; | i € N}
is the set of edge types (relations), p € P, = {p; | j € N} is the set of node
positions under edge type r, Wri p denotes learnable parameters when the node
is in the pth position with edge type r, and N,’¥ denotes the set of neighbor
nodes of v in edge type r when v is in pth position.
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3. GNN-Based Framework to Rank Formulas

Our four papers collectively developed and established a GNN-based frame-
work for learning symbolic expressions to guide decision processes in symbolic
methods. In this chapter, we discuss the applications of our framework pre-
sented in these four papers, addressing the four research questions introduced
in Chapter 1.4. For each research question, we begin by summarizing the
answers from related works, then we outline our approach. Finally, we present
our findings based on our work.

3.1 Training Tasks for Decision Problems (RQ1)

We can broadly categorize training tasks for decision problems in symbolic
methods into three types: classification-based, ranking-based, and sequential
decision tasks.

The classification-based approach is the most straightforward way to model
the decision process. It employs binary or multi-class classification to resolve
decision problems that involve a fixed set of choices. For instance, Selsam et
al. [69] model a GNN-based SAT solver as a binary classification task, where
the model predicts whether a given query is satisfiable or unsatisfiable. Simi-
larly, Zhang et al. [70] formulate solver selection as a multi-class classification
problem, where the model selects the most suitable solver from a portfolio
based on which one is expected to solve the given instance fastest.

The ranking-based approach is typically used when the input has a variable
size. A common method is to decompose the problem into repeated binary
classification tasks multiple times and then aggregate the results to establish
a ranking. For example, DeepMath [71] and FormulaNet [72] provide early
explorations of this approach by modeling premise selection in automated
theorem proving as a series of binary classification tasks.

When the decision process involves a sequence of inter-dependent decisions
with temporal dependencies, a sequential decision approach is required. For
instance, TRAIL [73] trains a neural policy using self-play (similar to AlphaGo
Zero [30]) to guide the theorem proving process.

3.1.1 Our Works Regarding to RQ1

Our work explores both classification-based and ranking-based tasks.
In Paper I, we investigate five training tasks (Task 1-5) based on the graph
representations of CHCs.
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* Task 1 involves identifying different node types in the graph represen-
tation. In our CHC graph representation, node types correspond to the
types of symbols in CHCs. For instance, this task determines whether a
symbol in a CHC is an argument of an atomic formula. As a binary clas-
sification task, it evaluates whether the selected GNN, given the current
graph representation, can effectively learn the basic syntax of CHCs.

* Task 2 focuses on predicting the occurrence of an element in a CHC
system. Unlike the previous task, this is a regression task that outputs
numerical values rather than discrete classes. It demonstrates the potential
of the GNN-based framework to provide direct numerical predictions.

* Task 3 aims to determine whether an element in a CHC system is involved
in a cycle by checking its presence in a strongly connected component
within the graph representation. This binary classification task highlights
the framework’s ability to recognize fundamental graph structures such
as cycles.

* Task 4 predicts the existence of bounds for the arguments of atomic
formulas. As a binary classification task, it showcases the framework’s
applicability to undecidable problems.

* Task S predicts whether a clause belongs to a Minimal Unsatisfiable Sub-
set (MUS). This binary classification task demonstrates the framework’s
potential in handling ranking-based tasks.

Paper 1 focuses on exploring various training tasks in the framework’s
training phase, highlighting its robustness across different tasks and laying the
foundation for subsequent research.

Paper II extends Task 5 from Paper I, specifically targeting the identification
of MUSes in unsatisfiable CHC systems. The primary challenge in this exten-
sion lies in collecting high-quality training data. To address this, we gather
training data from single MUSes, their unions, and their intersections.

Paper III integrates two models trained on classification tasks to guide
branching selection in a Nielsen transformation-based algorithm for solving
word equations. Since the branching selection problem has a fixed number of
possible choices, framing it as a classification task is a natural choice.

In Paper IV, the objective is to rank word equations at each iteration of the
Nielsen transformation-based algorithm. Instead of simply decomposing the
ranking problem into multiple binary classification tasks, we propose two alter-
native approaches to encode the problem: 1. Enhancing the binary classification
task by incorporating global information into each binary query. 2. Reformu-
lating the problem as a multi-class classification task with a fixed number of
possible outcomes. If the input size exceeds this fixed limit, we truncate it; if it
is below the limit, we pad the input accordingly.

To ensure high-quality training data, we extract data from the shortest paths
within the unsatisfiable subtree.
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3.1.2 Answer to RQ1

Our empirical answer to RQ1 is as follows:

* If the decision process has a well-defined target with a fixed number of
choices, such as “At this point, branch left or right” or “This variable has
or does not have a bound,” then encoding the problem as a classification-
based task is the optimal choice.

* If the decision process must be modeled as a ranking task due to a variable
number of inputs, it is crucial to incorporate global information into the
input representation.

For training data collection, the key strategy is to first expand the sources
of training data and then select the highest-quality data from the best source.
When extracting training data from traces of problem-solving processes, gener-
ating multiple traces for the same problem and selecting the best trace—i.e.,
the one that minimizes time or the number of steps required to solve the
problem—ensures higher-quality data. If the training data consists of stan-
dard intermediate elements, collecting them from multiple solvers can further
improve data quality.

3.2 Representations of Formulas (RQ?2)

The early research efforts that introduced deep learning into symbolic reasoning
tasks primarily relied on handcrafted features or encoded logical formulas as
sequences or even images. For instance, Loreggia et al. [74] approached SAT
solver selection by converting the ASCII text of SAT and Constraint Satisfac-
tion Problem (CSP) instances into fixed-size grayscale images, subsequently
applying a Convolutional Neural Network (CNN) to predict the optimal solver.
Similarly, Wang et al. [75] encoded Conjunctive Normal Form (CNF) formulas
as compact 2D images and applied CNNs to process them. Grozea et al. [76]
trained recurrent networks on handcrafted features to guide branch decisions
in the DPLL algorithm [77] for the 3-SAT problem [78], aiming to reduce the
search tree size.

However, representing formulas as text or flat feature vectors failed to cap-
ture their rich structural properties. It became evident that more structured
representations were necessary, as naive sequence encodings struggled to effec-
tively preserve the variable—clause relationships and term structures inherent
in logical formulas. This realization prompted a shift toward graph-based
representations, which naturally reflect the underlying structure of symbolic
expressions and have gained prominence in recent years.

For example, in NeuroSAT [69], literals are represented as nodes, and edges
connect literals based on clause co-occurrence. Graph-Q-SAT [65] extends this
idea by representing both clauses and variables as nodes, with an undirected
edge linking a variable node to a clause node if the variable appears in the
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clause. If the variable is negated in the clause, the edge stores this information
as a feature.

Paliwal et al. [66] proposed a graph-based representation for Higher-Order
Logic (HOL) formulas using bidirectional syntax trees, where subexpressions
and terms are treated as nodes connected by bidirectional edges. Nodes cor-
responding to the same variable (even if bound by different quantifiers) are
merged, while nodes and edges are annotated with type information relevant to
the terms they represent. Additionally, special nodes are introduced to explicitly
capture function applications.

3.2.1 Our Works Regarding to RQ2

In Papers I and II, we propose two graph representations for the CHC system.

One of these representations is the Control- and Data-Flow Hypergraph
(CDHG), which models all symbols as nodes. The relationships between
symbols are captured using various types of binary and hyper-edges. An
example illustrating this encoding is presented in Figure 3.1. The core idea
of representing the CHC system in this manner is to capture its control flow
through implications within each clause and its data flow across the system.
Finally, nodes representing the same symbol are merged.

L+ L L(z,y)+y=z+1

CFHE

CFHE Clause

CFHE

DFHE

!
[ ]

Figure 3.1. Graph components of CDHG. In the left figure, atomic formulas of the
form L(x,y) are encoded by representing their arguments and relation symbols as
nodes, with binary edges connecting the arguments to the relation symbol to capture
their relationships. Constraints such as a # b are encoded using a syntax tree, where
operators and elements are represented as nodes, connected by binary edges to reflect
their hierarchical structure. In the middle figure, the control flow of the implication
relation L < L’ is encoded using a Control Flow Hyperedge (CFHE). The node labeled
“clause” serves as an abstract symbol acting as a clause identifier in a CHC system. The
right figure illustrates how data flow is represented in a CHC. The rule L(x,y) <y =
x+ 1 is encoded by introducing a Data Flow Hyperedge (DFHE), which connects the
result of x+ 1 to y, thereby capturing the data dependency from x+ 1 to y. The DFHE
also connects to the “clause” node to distinguish this assignment from others.

Another graph representation is the Constraint Graph (CG). The main idea is
to divide each CHC into three layers, each representing a different aspect of the
CHC. An example is shown in Figure 3.2. The predicate layer represents all
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atomic formulas in the CHC system. The clause layer encodes the implication,
capturing the relationship between the body’s atomic formulas and the head for
each clause. The constraint layer represents the syntax tree of the constraints
appearing in the body. These three layers are connected through additional
edges, forming the final CG.

L(z,y) « L(z",y) Ahy=2"+1

Predicate Layer /@
L .

Clause Layer":l

Clause

Figure 3.2. Graph representation of the CG for a CHC of the form L(x,y) + L(x',y") A
y = x+ 1. The top figure represents the predicate layer, which encodes the atomic
formulas in the CHC. Relation symbols and their arguments are represented as nodes,
with binary edges capturing their relationships. The same relation symbols appearing
in different atomic formulas are merged. The middle figure illustrates the clause layer,
where a clause node serves as an identifier for the clause. The head and body atomic
formulas, along with their arguments, are represented as nodes. The bottom figure
depicts the constraint layer, which encodes the constraint in the body as a syntax tree.
The same elements in the three layers are connected by additional edges to form a
complete CG.

For both CDHG and CG, we illustrate only their core concepts by presenting
their main components. The complete formal definitions can be found in
Paper 1.

In Paper III and IV, we propose six graph representations for word equa-
tions, all of which are built upon the syntax tree of a word equation. In these
representations, all symbols are represented as nodes, while operators, such as
“=" and concatenation, are represented as edges.

For example, consider the word equation aXa = bY X, where a and b are

letters, and X and Y are variables. The construction of the syntax tree begins
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“__s

by placing the “=" symbol as the root. The nodes a and b are then connected as
the left and right children, respectively. The following elements X and Y are
subsequently connected to a and b as child nodes.

In Figure 3.3, we illustrate the syntax tree of word equations along with
two variations. One variation extends the syntax tree by adding extra nodes
to indicate both the type of each symbol and occurrences of the same symbol.
The other variation introduces special nodes, Oy, 1x,0r, 1, to represent the
occurrences of each letter and variable in binary. The remaining four graph
representations are derived as variations of these two graphs.

aXa=bYX

Figure 3.3. Three graph representations of the word equation aXa = bY X are shown.
The left figure depicts the syntax tree of the word equation. The middle figure presents
a variation of the syntax tree that extends it by adding extra nodes to indicate both the
type of each symbol and occurrences of the same symbol. The right figure introduces
another variation, which incorporates four special nodes, Oz, 1x,Or, 1r, to represent the
occurrences of each letter and variable in binary.

3.2.2 Answer to RQ2

According to the experimental results from our ablation studies comparing
these graph representations, our answer to RQ2 is as follows:

* The graph representation must include all explicit syntactic elements of
the formula.

* A heterogeneous graph with hyperedges and merged identical nodes can
represent structural information more efficiently and encode information
in a compact manner, resulting in better performance. However, designing
such a representation requires greater domain-specific expertise.

* The graph representation should include only the information necessary
for the task. Redundant information not only increases computational
overhead but can also mislead the training process, ultimately degrading
model performance. For instance, including element occurrence counts in
the graph representation of a word equation is unnecessary for the branch
selection task in a Nielsen transformation-based algorithm. The decision
on which transformation to apply depends on the structural properties
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of the equation (e.g., variable dependencies, and cyclic dependencies),
rather than the frequency of element occurrences.

3.3 GNN Selection (RQ3)

In the field of symbolic reasoning, Graph Neural Networks (GNNs) have
emerged as a powerful tool for learning structural features of logical symbolic
expressions from their graph representations. Simple architectures, such as
Graph Convolutional Networks (GCN) [64], laid the foundation by efficiently
encoding logical structures. More advanced models, including Graph Iso-
morphism Network (GIN) [79], Graph Attention Networks (GAT) [80], and
Relational Graph Convolutional Networks (R-GCN) [81], introduce greater
expressiveness, enabling the differentiation of complex logical patterns and
heterogeneous relationships.

GCNs are among the most widely used GNN architectures and are often
chosen as a baseline or starting point for symbolic reasoning tasks due to their
stable performance and low computational complexity. For example, in early
work on premise selection for theorem proving, Wang et al. [72] proposed
FormulaNet, a GCN-based deep graph embedding of logical formulas. Its
simplicity allowed the focus to remain on representing formula structures as
graphs, where nodes represent symbols and clauses, without requiring extensive
model tuning. Similarly, in an SMT solver scheduling approach, Hula et al. [68]
initially experimented with more advanced GNNs but found that a basic GCN
achieved comparable accuracy.

The GIN is designed to approximate the Weisfeiler—Lehman graph isomor-
phism test. It employs an injective aggregation mechanism, where neighbor
features are summed with a learnable weight and then passed through a nonlin-
ear transformation. This ensures that different multisets of neighbors produce
distinct node embeddings. Essentially, GIN’s sum-and-MLP update enables it
to capture fine-grained structural differences that simpler averaging methods,
such as those used in GCNs, might fail to distinguish. In other words, GIN can
differentiate nearly identical graph structures. Li et al. [82] demonstrated that
on a specially constructed SAT dataset where formulas differ by only one literal,
most models struggled, but GIN achieved the top performance for GNN-based
SAT solvers.

The GAT introduces an attention mechanism, allowing the model to assign
data-driven weights during message passing. This enables the network to focus
on the most relevant parts of the graph. In complex graph representations of
logical formulas, such as those with many clauses, not all neighboring nodes
contribute equally to a given inference. Researchers have leveraged GAT to
allow the model to learn which symbols or clauses are most influential. Selsam
et al. [26] demonstrated that incorporating an attention layer (a variant known
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as GATVv2) into their models for guiding SAT solvers, such as Z3 [56] and
Glucose [83], significantly improved the accuracy of satisfiability predictions.
The R-GCN extends GCNs to graphs with multiple edge types or relations.
Symbolic problems often involve heterogeneous graphs. For instance, first-
order logic formulas can be represented as heterogeneous structures consisting
of multiple types of nodes to represent terms, predicates, and clauses, as well
as edges to capture their relationships. R-GCNs are particularly well-suited for
leveraging this structural richness. By assigning separate trainable parameters
(weights) to each logical relation (e.g., “parent clause” vs. “sibling argument”),
R-GCNs can preserve semantic distinctions that a homogeneous model might
blur. For instance, in theorem proving, Olsak et al. [84] utilized a relational
clause-term graph, where edges such as “literal in clause” were distinguished
from “term in literal,” enabling a name-invariant embedding of formulas.

3.3.1 Our Works Regarding to RQ3

In Papers I and II, we developed a Relational Hypergraph Neural Network
(R-HyGNN), which extends R-GCN to handle hyperedges and typed relations.
This model efficiently captures n-ary relations in the graph representation of the
CHC system. Each edge type (e.g., data-flow edges and syntactic AST edges)
is assigned its own trainable parameters (weights). This design was motivated
by the need to learn both program semantics (data and control flow) and syntax.
R-HyGNN achieved over 90% accuracy in predicting which clauses appear
in counterexamples, significantly aiding in the identification of unsolvable
verification conditions.

In Papers III and IV, we experimented with GCN, GIN, and GAT to extract
structural information from the graph representation of word equations to
guide a Nielsen transformation-based algorithm. Among these models, GCN
achieved the best balance between performance and computational overhead.
Note that the experimental results for GIN and GAT are not included in the
published paper. However, their existence helps us to understand which model
is best suited for the particular tasks discussed in our paper.

3.3.2 Answer to RQ3

Based on both the literature review and our experimental results, the answer to
RQ3 is as follows:
* GCN should always be considered and serve as a baseline.
* If the graph of the symbolic expression is sparse or too large, GAT usually
achieves the best performance.
o If the graphs contain similar substructures, GIN is typically the best
choice.
* For graphs with complex structures, R-HyGNN is the preferred option, as
it can effectively handle both heterogeneous structures and hyperedges.
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3.4 Integrating Strategies (RQ4)

Traditional solver heuristics, such as Variable State Independent Decaying Sum
(VSIDS) [24] in SAT solvers, are extremely fast since they rely on simple arith-
metic operations or lookups. In contrast, neural model inference involves sub-
stantial computation (e.g., a forward pass through a GNN or Transformer [85]),
which can slow down the solver if invoked too frequently.

One approach to mitigate this overhead is to reduce the frequency of model
calls during solving, using the model only at selective points or shifting its
use to an offline stage. For example, NeuroBack [86] follows this strategy by
performing offline model inference. It runs the neural model before the solving
process to gather guidance, which is then utilized during the solver’s search
without requiring further expensive model calls.

To prevent solver slowdowns while a model runs, researchers sometimes
deploy the model in a separate process or server, allowing the solver and model
to operate in parallel. In this setup, the solver sends queries (such as the
current state or extracted features) to a model server—potentially running on
a GPU or as a separate thread/process—and receives the model’s decisions
asynchronously. For instance, Karel [87] integrates a GNN into the prover’s
workflow via a client-server architecture. During the proof search, the prover
identifies candidate instantiations and sends their representations to the server.
The server processes these representations through the GNN and returns scores
to the prover.

A complementary strategy is to optimize the model itself for faster exe-
cution. This can involve using a smaller neural network, applying model
distillation [88], or even converting the learned policy into a symbolic form. A
recent example is the Symb4CO framework [89], which employs a large neural
network offline to discover a compact symbolic formula that can replace the
neural model at runtime.

3.4.1 Our Works Regarding to RQ4

In Papers I and II, we employ a “one-shot” prediction strategy before invoking
the solver. This approach eliminates the overhead caused by frequent model
calls. The trade-off is that the guidance remains static (computed once) and
cannot adapt mid-search. However, in many cases, this “one-shot” advice is
sufficient to improve performance without requiring continuous model infer-
ence.

In Papers III and IV, we optimize the overhead of calling GNNs at each
iteration by caching neural model outputs and intermediate computations. This
allows the solver to reuse previously computed results instead of recomputing
from scratch on similar states. Specifically, we construct a hash table to store
the embeddings of word equations. At each branch point, only equations
with modified variables need to be updated, enabling most word equation
embeddings to be reused.
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For both “one-shot” and continuous model calls, we experimented with three
strategies:

* Model-only guidance: In this approach, the solver’s decisions are en-
tirely determined by the model’s predictions.

* Combining the model with randomness: At each prediction point,
we alternately use the model’s prediction and a random choice. This
stochastic element helps escape local minima induced by the model’s
deterministic guidance.

* Combining the model with existing heuristics: For both “one-shot”
and continuous prediction, existing heuristics can be numerically inte-
grated with the model’s predictions to balance predefined knowledge with
learned distributions.

3.4.2 Answer to RQ4

Based on the experimental results of our research, the answer to RQ4 is as
follows:

* When the model’s input features can be updated incrementally or when
solvers frequently encounter related subproblems, caching intermediate
embeddings can significantly reduce the overhead of model calls.

* Introducing randomness can be beneficial, but the randomization rate

needs careful tuning. If the model tends to cause the solver to get stuck
in local minima, an appropriately adjusted level of randomness can help
mitigate this issue.
Numerically combining the model with predefined heuristics did not yield
the best performance across all our experiments. We hypothesize that this
is due to one of two reasons: (1) the learned knowledge and predefined
heuristics may sometimes lead to conflicting behaviors, negatively im-
pacting performance, or (2) the model may learn behaviors similar to the
predefined heuristics, resulting in limited performance improvements.
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4. Summary of Contributions

4.1 PaperI

Exploring Representation of Horn Clauses Using GNNs. Chencheng Liang,
Philipp Riimmer, Marc Brockschmidt. In Proceedings of 8th Workshop on
Practical Aspects of Automated Reasoning (PAAR), 2022.

Summary

This work explores the application of deep learning techniques to learn program
features for solving program verification problems, with a particular focus on
Constrained Horn Clauses (CHCs). CHCs are a widely used intermediate
representation in program verification, and many of the benchmarks in the
CHC-COMP repository originate from real-world program verification tasks.
In this study, we propose two novel graph representations for CHCs: the
Constraint Graph (CG) and the Control- and Data-Flow Hypergraph (CDHG).
These representations are designed to capture different aspects of program
information: the CG emphasizes abstract program syntax, while the CDHG
focuses on semantic information, such as control and data flow within the
program.

To effectively process the CDHG, which involves hyperedges (edges that con-
nect multiple nodes), we extend the Relational Graph Convolutional Network
(R-GCN), a message-passing-based Graph Neural Network (GNN), into a new
architecture called the Relational Hypergraph Neural Network (R-HyGNN).
This extension enables the model to handle multiple types of edges, including
hyperedges, and learn from the complex relational structures present in the
CDHG.

We then train GNN models on five proxy tasks designed to systematically
evaluate the model’s ability to learn both syntactic and semantic information
from CHCs. These tasks are ordered by increasing difficulty:

1. Argument Identification: Classify whether a node represents an argument

of a relation symbol.

2. Relation Symbol Occurrence Count: Predict how many times a relation
symbol appears in all clauses.

3. Relation Symbol Occurrence in Strongly Connected Components (SCCs):
Determine if a relation symbol is part of a cycle in the graph (i.e., belongs
to an SCC).

4. Existence of Argument Bounds: Predict whether an argument has a lower
or upper bound, which is an undecidable property in general.
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5. Clause Occurrence in Counterexamples: Predict whether a clause appears
in a counter-example, which is closely related to the satisfiability of the
CHCs.

The first three tasks focus on syntactic and structural properties of the CHCs,
such as identifying elements of the formula, counting symbol occurrences,
and recognizing graph-theoretic patterns such as SCCs. In contrast, the last
two tasks require the model to learn semantic information that is crucial for
solving program verification problems, such as predicting argument bounds
and identifying clauses involved in counter-examples.

Finally, we evaluate the performance of our graph representations (CG and
CDHG) combined with R-HyGNN on these tasks. The experimental results
demonstrate that the framework is capable of extracting intricate semantic
information from CHCs, achieving high accuracy on tasks that require un-
derstanding complex program features. Notably, the model shows promising
potential to generate effective heuristics for program verification, particularly
in guiding Horn clause solvers and other verification tools.

Author Contributions

The theoretical framework presented in this paper was developed collabora-
tively by Riimmer, Brockschmidt, and Liang, with equal contributions. The
implementation was primarily carried out by Liang, with contributions from
Riimmer and consultations with Brockschmidt. The evaluation of the frame-
work was conducted by Liang. The paper was written by Liang and reviewed
and corrected by Riimmer and Brockschmidt.
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4.2 Paper II

Boosting Constrained Horn Solving by Unsat Core Learning. Parosh Aziz
Abdulla, Chencheng Liang, Philipp Rimmer. In Proceedings of 25th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), 2024.

Summary

In this work, we introduce a prototype of a GNN-based heuristic framework
aimed at enhancing the decision-making processes of symbolic solvers. The
framework comprises the following key steps:

1. Modeling and Data Collection: We identify the critical decision points
in the solver where deep learning heuristics can be applied. This involves
determining the semantic information required to guide these heuristics,
specifying the source of training data, and defining the learning task (e.g.,
classification or regression).

2. Graph Representation of Formulas: To leverage GNNs, we encode
logical formulas as graphs that capture the necessary syntactic and struc-
tural information, thereby reflecting the semantic properties aligned with
our learning objectives.

3. GNN Selection: We select an appropriate GNN architecture to process
these graph representations. The choice of architecture depends on the
problem domain and the specific graph representation employed.

4. Integration into the Solver: We determine how to integrate the trained
GNN model into the solver as a heuristic. This involves specifying
how the model’s predictions will influence the solver’s decision-making
process.

As a first experimental instance of this framework, we address program
verification problems by encoding them as CHCs and solving them using the
CHC solver Eldarica. Eldarica supports both Counterexample-Guided Ab-
straction Refinement (CEGAR) and Symbolic Execution (SymEx) approaches,
representing two fundamental categories of symbolic solvers.

For this experimental instance, our approach is detailed as follows:

1. Modeling and Data Collection: Eldarica explores the state space of
CHC:s by constructing an Abstract Reachability Hypergraph (ARG), with
solver performance heavily dependent on the order in which clauses are
expanded. We train a GNN to predict the likelihood that a clause is
part of a Minimal Unsatisfiable Subset (MUS), as identifying a MUS
allows the solver to establish unsatisfiability without further expansion.
We experiment with different variations of MUS-based training data,
including single MUS, intersection of MUSes, and union of MUSes, to
determine which variant offers the most effective guidance.

2. Graph Representation of Formulas: We adopt the CG and CDHG rep-
resentations from Paper I, which have demonstrated strong performance
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in capturing both the syntactic and semantic characteristics of CHCs,
making them well-suited for our learning tasks.

. GNN Selection: We employ the R-HyGNN architecture, which has

shown excellent performance in handling the hypergraph structures of
CHC:s and aligns well with our chosen graph representations.

. Integration into the Solver: We investigate eight distinct strategies for

incorporating GNN predictions into the solver. These strategies fall into
three broad categories: (i) GNN-only, where the solver relies solely on
GNN predictions; (i1) GNN + Existing Heuristics, which combines GNN
predictions with Eldarica’s default heuristics to leverage both learned and
handcrafted guidance; and (iii) GNN + Randomness, which introduces
an element of randomness to balance exploration and exploitation, en-
suring that the solver does not over-rely on the GNN predictions while
maintaining a diverse search strategy.

The experimental results confirm the effectiveness of our framework, show-

ing improvements in both the number of solved problems and the average
solving time for the CEGAR and SymEx approaches. This work demonstrates
the potential of integrating deep learning-based heuristics into symbolic solvers
to enhance their decision-making processes, and our framework is flexible
enough to be extended to other symbolic solvers beyond CHCs.

Author Contributions

The theoretical framework presented in this paper was developed collaboratively
by Abdulla, Riimmer, and Liang, with equal contributions. The implementation
was primarily carried out by Liang, with contributions and consultations from
Riimmer. The evaluation of the framework was conducted by Liang. The paper
was written by Liang and reviewed and corrected by Riimmer and Abdulla.
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4.3 Paper III

Guiding Word Equation Solving Using Graph Neural Networks. Parosh
Aziz Abdulla, Mohamed Faouzi Atig, Julie Cailler, Chencheng Liang, Philipp
Riimmer. In Proceedings of 22nd International Symposium on Automated
Technology for Verification and Analysis (ATVA), 2024.

Summary

In this paper, we demonstrate another application of our framework to symbolic
methods, specifically focusing on word equation solving. To the best of our
knowledge, no prior work before our paper has applied deep learning techniques
to this problem. Our approach indicates that the proposed framework can be
generalized to any symbolic method.

First, we introduce a calculus for word equations, which consists of a set of
inference rules for branching and simplifying such equations. Next, we present
an algorithm that recursively applies these rules until the solution to a word
equation becomes trivial. This procedure produces a proof tree that leads to the
final solution.

A key challenge arises in deciding which branch of an inference rule to
explore first, as it significantly impacts performance. Choosing the wrong
branch may increase the length of the word equation rather than simplifying it,
potentially causing the algorithm to diverge. To address this issue, we adapt our
framework to guide the branching process and improve overall performance:

1. Modeling and Data Collection: We formulate the branching decisions
as a multi-class classification task. For each branching requirement in
the inference rules, we determine which branch is optimal based on the
current state of the word equation. We label a branch as “positive” if it
leads to a valid solution with a minimal search sub-tree.

2. Graph Representation of Formulas: We propose five distinct graph
representations for word equations. The simplest one is an abstract
syntax tree rooted at the “=" symbol, connecting elements on the left
and right sides sequentially. The most comprehensive representation
includes additional nodes and edges to capture variables and letters,
thereby preserving all necessary information about the word equation.

3. GNN Selection: Since our chosen graph representations do not contain
hyper-edges, we employ Graph Convolutional Networks (GCNs) to learn
relevant features.

4. Integration into the Solver: We investigate two primary strategies:
using the GNN model alone or combining the GNN model with a random
selection process.

Furthermore, we define three different backtracking strategies to manage the

tree search. Experimental results show that, apart from the systematic search
strategy, our framework remains robust under various search strategies. This
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outcome indicates that the GNN effectively captures semantic information,
enabling it to consistently select good branches under diverse conditions.

We evaluate our framework on both artificially generated and real-world
encoded benchmarks. Our experimental results demonstrate that our method
outperforms leading solvers, such as Z3 and cvc5, on benchmarks consisting of
single word equations while achieving competitive performance on conjunctive
word equation benchmarks.

Note that we fixed an error in the calculus by adding an additional inference
rule:

X-u=X-vA¢

U=vAQ

in the extended version [90] of the published work.

Ry

Author Contributions

The theoretical framework presented in this paper was developed collabora-
tively by Abdulla, Riimmer, Atig, and Liang, with equal contributions. The
implementation was primarily carried out by Liang, with contributions from
Riimmer and consultations from Cailler and Atig. The evaluation of the frame-
work was conducted by Liang. The paper was written by Liang and reviewed
and corrected by Riimmer, Cailler, Abdulla, and Atig.
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4.4 Paper IV

When GNNs Met a Word Equations Solver: Learning to Rank Equations.
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Julie Cailler, Chencheng Liang,
Philipp Riimmer. Under Submission to 30th International Conference on
Automated Deduction (CADE), 2025.

Summary

In this work, we extend our learning framework to handle ranking tasks. Unlike
classification problems, ranking must accommodate variable input sizes and
produce an ordered list of items. We instantiate this framework in the word
equation solver presented in Paper IV.

The algorithm in Paper IV solves word equations by recursively applying
a set of inference rules to branch and simplify the equation until a solution
is apparent. We first enhance this algorithm for more efficient handling of
conjunctive word equations and then adapt it to select, from a set of equations,
the one to which inference rules should be applied. This strategy permits
the selection of different starting points; in the context of conjunctive word
equations, identifying an unsatisfiable equation early allows the solver to bypass
further checks, thereby reducing the overall solving time.

To realize this, we train a GNN model to emulate an oracle that, at each
step, predicts the word equation most likely to be unsatisfiable or that will lead
quickly to an unsatisfiable branch. The model outputs a score for each word
equation, and the equation with the highest score is processed first.

The four key components to adapt the framework are listed below:

1. Modeling and Data Collection: We propose three methods to adapt

a classification model for ranking, i.e., to output a list of scores for a
set of elements. Our training data is designed to enable the model to
(i) detect unsatisfiable word equations and (ii) identify the equation that
leads to the shortest solution path. Data is collected from two sources:
MUSes obtained by solving problems that our algorithm could not resolve
using leading solvers such as Z3 and cvcS5, allowing the model to learn
unsatisfiability patterns; and execution traces from our algorithm, from
which we extract rankings corresponding to the shortest solution paths.

2. Graph Representation of Formulas: We introduce a novel graph repre-
sentation for word equations that encodes variable and letter occurrences
in conjunctive equations, thereby capturing the global structural informa-
tion.

3. GNN Selection: We employ a GCN as our feature extractor to minimize
extraneous influences from other components.

4. Integration into the Solver: We explore three integration strategies:
using the GNN model exclusively at varying frequencies, combining the
GNN model with a random ranking baseline, and controlling the GNN
model via run-time parameters.
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For satisfiable problems, the order of processing conjuncts does not af-
fect performance since all conjuncts must be checked to verify satisfiability.
Nevertheless, the model is designed not only to identify unsatisfiable word
equations but also to learn which selection leads to the shortest solution path.
Consequently, it proves beneficial even for satisfiable instances.

We evaluate our framework on two benchmark categories: linear and non-
linear word equations. A linear word equation is one in which each variable
appears only once, whereas a non-linear word equation features at least one
variable appearing multiple times. Our framework outperforms all leading
solvers on linear benchmarks and demonstrates competitive performance on
non-linear benchmarks. However, in cases of high non-linearity (i.e., when a
variable appears many times), the advantages of our algorithm diminish due to
inherent limitations of the inference rules that cannot be mitigated by ranking.

Author Contributions

The theory presented in the paper was developed by Abdulla, Atig, Cailler,
Liang, and Riimmer, the implementation was done by Liang and Riimmer, and
the evaluation was done by Liang.

The theoretical framework presented in this paper was developed collabora-
tively by Abdulla, Riimmer, Atig, Cailler, and Liang, with equal contributions.
The implementation was primarily carried out by Liang, with contributions
from Riimmer and consultations from Cailler and Atig. The evaluation of the
framework was conducted by Liang. The paper was written by Liang and
reviewed and corrected by Riimmer, Cailler, Abdulla, and Atig.
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5. Conclusions and Future Work

5.1 Conclusions

This dissertation explored the integration of deep learning with symbolic meth-
ods, focusing on leveraging Graph Neural Networks (GNNs) to enhance deci-
sion processes in symbolic solvers. The key contributions include:

1. Introducing a general learning-based framework to replace heuristic
decision-making in symbolic methods with data-driven deep learning
models.

2. Proposing novel graph representations for Constrained Horn Clauses
(CHCs) and word equations to capture essential structural and semantic
features for GNN models.

3. Investigating different training task formulations, including classification-
based and ranking-based tasks, to effectively model decision processes.

4. Experimenting with various GNN architectures, such as Graph Convo-
lutional Networks (GCNs) and Relational Hypergraph Neural Networks
(R-HyGNNp5s), to determine their suitability for different symbolic reason-
ing tasks.

5. Implementing and evaluating the framework in CHC solvers and word
equation solvers, demonstrating significant improvements in solver per-
formance.

6. Exploring multiple strategies to integrate trained models into solvers
while minimizing computational overhead, including caching mecha-
nisms, hybrid heuristic approaches, and selective model querying.

The experimental results show that deep learning can effectively complement
and, in some cases, surpass traditional heuristics in guiding symbolic methods.
The proposed framework generalizes across different problem domains, making
it a valuable tool for automating heuristic selection in solvers.

5.2 Future Work

While this dissertation establishes a solid foundation for integrating deep learn-
ing into symbolic methods, several open directions remain for future explo-
ration.

For our word equation solver, potential improvements include introducing
new inference rules to improve the handling of non-linear word equations and
investigating how length constraints and regular expressions can be integrated
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into the solving process. Currently, branch selection and ranking are handled as
separate heuristics. A promising direction is to develop a unified learning-based
approach that shares embeddings for both decision processes.

Regarding deep learning models, incorporating attention mechanisms into
R-HyGNN could help selectively focus on the most relevant parts of a formula,
particularly in tasks where long-range dependencies play a crucial role. Another
potential direction is exploring hybrid architectures that combine classical
logic-based techniques with deep learning, leveraging the strengths of both
approaches. Additionally, hierarchical reinforcement learning techniques could
be investigated to coordinate decision-making at different levels.

Current learning-based heuristics rely on training from solver execution
traces, meaning they learn heuristics based on past solving history. A novel
direction is to develop heuristics that predict solver decisions by anticipating
near-future solving trajectories. This could involve using sequence modeling
techniques such as Long Short-Term Memory (LSTM) [91] or transformers to
predict solver states over multiple steps, developing a lookahead mechanism
that considers multiple solver actions before making a decision, or exploring
contrastive learning approaches where models learn to differentiate between
effective and ineffective solving trajectories, thereby improving heuristic selec-
tion.

In summary, this dissertation has demonstrated the potential of deep learning
to enhance symbolic reasoning. With further refinements and extensions,
learning-based heuristics could become a fundamental component of next-
generation symbolic solvers, bridging the gap between deep learning and
formal methods.
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Summary in Swedish

Symboliska metoder dr avgorande for formella resonemangsuppgifter sdsom
programverifiering, teorembevisning och 16sning av villkorsproblem. Dessa
metoder anviander symboliska uttryck for att kompakt representera stora eller
odndliga tillstdndsrum, vilket gor dem mer effektiva @n explicit uppriakning.
Traditionella heuristiker som anvinds i symboliska I6sare dr dock ofta manuellt
utformade och har svart att generalisera over olika doméner. Denna avhan-
dling foreslar ett djupinldrningsbaserat ramverk for att forbittra heuristiskt
beslutsfattande i symboliska 16sare. med hjidlp av graf-neuronnit (GNNs)
mojliggdr ramverket adaptiv, datadriven viagledning genom att ldra sig struk-
turella monster fran symboliska uttryck. Beslutsproblem inom symboliska
metoder formuleras som klassificerings- eller rangordningsuppgifter, vilket
mojliggor ett systematiskt tillvigagangssitt for att integrera maskininldarning i
symboliskt resonemang. Ramverket implementeras inom doménerna for 16sare
av begriansade Horn-klausuler (CHC) och ordekvationer, och visar forbéttrad
l6sningseffektivitet genom inldrningsbaserade heuristiker.

Symboliska metoder arbetar med logiska formler och algebraiska strukturer
for att effektivt utforska och manipulera tillstandsrum. Inom programverifiering
sdkerstéller symboliska metoder att ett program &dr korrekt genom att koda
exekveringsvigar symboliskt och verifiera att de fljer givna specifikationer.
Inom teorembevisning omvandlas logiska pastaenden till formella uttryck, dér
inferensregler tillimpas for att hidrleda bevis. Losning av villkorsproblem
innebdr resonemang dver logiska formler for att avgora satisfierbarhet inom
olika matematiska teorier, sasom de som anvinds i SMT-16sare (Satisfiability
Modulo Theories) och 16sare av ordekvationer.

Trots sina fordelar medfor symboliska metoder utmaningar, bland annat
hantering av komplexa symboliska representationer, integration av flera lo-
giska teorier och sikerstillande av skalbarhet. Manga backend-verktyg, sdsom
SAT/SMT-16sare och CHC-l6sare, anvinder heuristiker for att optimera beslut-
sprocesser. Denna avhandling undersoker hur djupinlidrning kan ersétta eller
forbittra dessa heuristiker for att forbéttra 16sarnas prestanda och anpassnings-
formaga.

Ramverket som introduceras i denna avhandling bestar av flera centrala
komponenter. Logiska formler kodas forst som grafer som fangar bade syn-
taktiska och semantiska egenskaper, vilket mojliggor effektiv inldrning med
graf-neuronnit (GNNs). Nya grafrepresentationer har utvecklats for bade
CHCs och ordekvationer for att underlatta strukturerad inldrning. Tréning-
suppgifter formuleras antingen som klassificerings- eller rangordningsproblem,
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ddr beslutsprocesser sasom klausulval i CHC-l6sare och grenval i ordekvationer
hanteras.

Flera GNN-arkitekturer undersoks for att utvirdera deras effektivitet i olika
resonemangsuppgifter. Modeller sasom Graph Convolutional Networks (GCNs)
och Relational Hypergraph Neural Networks (R-HyGNN5) utvirderas utifran
deras formaga att fanga strukturell och semantisk information fran symboliska
uttryck. For att effektivt integrera tranade modeller i 16sare implementeras
strategier sasom cachelagring, hybrida heuristiker och selektiv modellforfragn-
ing for att minska den berdkningsmissiga belastningen samtidigt som pre-
standaforbittringar uppnas.

Ramverket implementeras i CHC-16sare och l16sare for ordekvationer. I CHC-
losare styr inldrningsbaserade heuristiker klausulvalet genom att forutsiga vilka
klausuler som tillhér minimala osatisfierbara delméngder (MUS:er). Flera
traningsstrategier undersoks, inklusive anvindning av enskilda MUS:er, deras
unioner och snitt. I 16sare for ordekvationer forbittrar ramverket prestandan
genom att rangordna ekvationer och vélja optimala grenar baserat pa strukturell
inldrning. En 16sare baserad pa Nielsen-transformationer forbéttras genom
GNN-baserad vigledning, vilket visar betydande effektivitetsvinster vid 16sning
av problem.

De experimentella resultaten bekriftar att inldrningsbaserade heuristiker
konsekvent forbittrar 16sarnas prestanda genom att minska losningstiden och
Oka antalet I6sta problem jamfort med traditionella heuristiker. Ramverket
generaliserar effektivt over olika symboliska resonemangsuppgifter, vilket gér
det till ett virdefullt verktyg for att automatisera heuristiskt urval i 16sare.

Avhandlingen dppnar flera mojligheter for vidare forskning. En mojlig
riktning &r att vidareutveckla losare for ordekvationer genom att ta fram nya
inferensregler och utoka ramverket for att hantera mer komplexa ordekvationer.
Optimering av GNN-arkitekturer for symboliskt resonemang &r en annan viktig
aspekt, ddr fokus ligger pa att utforma mer effektiva modeller som kan fanga
djupare strukturell information. Att utdka traningsdatakllor &r ocksa en central
fraga, eftersom en 6kad mangfald och méngd av triningsdata kan forbéttra gen-
eraliseringen 6ver flera problemomraden. Resultaten tyder pa att djupinldrning
har potential att revolutionera symboliskt resonemang och bana vig for en dnnu
djupare integration av Al-tekniker i formella metoder.
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Abstract

In recent years, the application of machine learning in program verification, and the embedding
of programs to capture semantic information, has been recognised as an important tool by
many research groups. Learning program semantics from raw source code is challenging due
to the complexity of real-world programming language syntax and due to the difficulty of
reconstructing long-distance relational information implicitly represented in programs using
identifiers. Addressing the first point, we consider Constrained Horn Clauses (CHCs) as a
standard representation of program verification problems, providing a simple and programming
language-independent syntax. For the second challenge, we explore graph representations of
CHCs, and propose a new Relational Hypergraph Neural Network (R-HyGNN) architecture to
learn program features.

We introduce two different graph representations of CHCs. One is called constraint
graph (CG), and emphasizes syntactic information of CHCs by translating the symbols and
their relations in CHCs as typed nodes and binary edges, respectively, and constructing the
constraints as abstract syntax trees. The second one is called control- and data-flow hypergraph
(CDHG), and emphasizes semantic information of CHCs by representing the control and data
flow through ternary hyperedges.

We then propose a new GNN architecture, R-HyGNN, extending Relational Graph Con-
volutional Networks, to handle hypergraphs. To evaluate the ability of R-HyGNN to extract
semantic information from programs, we use R-HyGNNs to train models on the two graph
representations, and on five proxy tasks with increasing difficulty, using benchmarks from
CHC-COMP 2021 as training data. The most difficult proxy task requires the model to predict
the occurrence of clauses in counter-examples, which subsumes satisfiability of CHCs. CDHG
achieves 90.59% accuracy in this task. Furthermore, R-HyGNN has perfect predictions on
one of the graphs consisting of more than 290 clauses. Overall, our experiments indicate that
R-HyGNN can capture intricate program features for guiding verification problems.
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1. Introduction

Automatic program verification is challenging because of the complexity of industrially
relevant programs. In practice, constructing domain-specific heuristics from program
features (e.g., information from loops, control flow, or data flow) is essential for solving
verification problems. For instance, [1] and [2] extract semantic information by per-
forming systematical static analysis to refine abstractions for the counterexample-guided
abstraction refinement (CEGAR) [3] based system. However, manually designed heuristics
usually aim at a specific domain and are hard to transfer to other problems. Along with
the rapid development of deep learning in recent years, learning-based methods have
evolved quickly and attracted more attention. For example, the program features are
explicitly given in [4, 5] to decide which algorithm is potentially the best for verifying
the programs. Later in [6, 7], program features are learned in the end-to-end pipeline.
Moreover, some generative models [8, 9] are also introduced to produce essential informa-
tion for solving verification problems. For instance, Code2inv [10] embeds the programs
by graph neural networks (GNNs) [11] and learns to construct loop invariants by a deep
neural reinforcement framework.

For deep learning-based methods, no matter how the learning pipeline is designed
and the neural network structure is constructed, learning to represent semantic program
features is essential and challenging (a) because the syntax of the source code varies
depending on the programming languages, conventions, regulations, and even syntax sugar
and (b) because it requires capturing intricate semantics from long-distance relational
information based on re-occurring identifiers. For the first challenge, since the source code
is not the only way to represent a program, learning from other formats is a promising
direction. For example, inst2vec [12] learns control and data flow from LLVM intermediate
representation [13] by recursive neural networks (RNNs) [14]. Constrained Horn Clauses
(CHCs) [15], as an intermediate verification language, consist of logic implications and
constraints and can alleviate the difficulty since they can naturally encode program logic
with simple syntax. For the second challenge, we use graphs to represent CHCs and
learn the program features by GNNs since they can learn from the structural information
within the node’s N-hop neighbourhood by recursive neighbourhood aggregation (i.e.,
neural message passing) procedure.

In this work, we explore how to learn program features from CHCs by answering two
questions: (1) What kind of graph representation is suitable for CHCs? (2) Which kind
of GNN is suitable to learn from the graph representation?

For the first point, we introduce two graph representations for CHCs: the constraint
graph (CG) and control- and data-flow hypergraph (CDHG). The constraint graph encodes
the CHCs into three abstract layers (predicate, clause, and constraint layers) to preserve as
much structural information as possible (i.e., it emphasizes program syntax). On the other
hand, the Control- and data-flow hypergraph uses ternary hyperedges to capture the flow
of control and data in CHCs to emphasize program semantics. To better express control
and data flow in CDHG, we construct it from normalized CHCs. The normalization
changes the format of the original CHC but retains logical meaning. We assume that
different graph representations of CHCs capture different aspects of semantics. The two



Table 1
Proxy tasks used to evaluate suitability of different graph representations.

Task Task type Description

1. Argument identification ~ Node binary For each element in CHCs, predict if it is an
classification  argument of relation symbols.

2. Count occurrence of rela- Regression For each relation symbol, predict how many times

tion symbols in all clauses  task on node it occurs in all clauses.

3. Relation symbol occur- Node binary For each relation symbol, predict if a cycle exists

rence in SCCs classification ~ from the node to itself (membership in strongly

connected component, SCC).
4. Existence of argument Node binary For each argument of a relation symbol, predict

bounds classification  if it has a lower or upper bound.
5. Clause occurrence in Node binary For each CHC, predict if it appears in counter-
counter-examples classification ~ examples.

graph representations can be used as a baseline to construct new graph representations of
CHC to represent different semantics. In addition, similar to the idea in [16], our graph
representations are invariant to the concrete symbol names in the CHCs since we map
them to typed nodes.

For the second point, we propose a Relational Hypergraph Neural Network (R-HyGNN),
an extension of Relational Graph Convolutional Networks (R-GCN) [17]. Similar to the
GNNs used in LambdaNet [18], R-HyGNN can handle hypergraphs by concatenating
the node representations involved in a hyperedge and passing the messages to all nodes
connected by the hyperedge.

Finally, we evaluate our framework (two graph representations of CHCs and R-HyGNN)
by five proxy tasks (see details in Table 1) with increasing difficulties. Task 1 requires the
framework to learn to classify syntactic information of CHCs, which is explicitly encoded
in the two graph representations. Task 2 requires the R-HyGNN to predict a syntactic
counting task. Task 3 needs the R-HyGNN to approximate the Tarjan’s algorithm [19],
which solves a general graph theoretical problem. Task 4 is much harder than the last
three tasks since the existence of argument bounds is undecidable. Task 5 is harder than
solving CHCs since it predicts the trace of counter-examples (CEs). Note that Task 1
to 3 can be easily solved by specific, dedicated standard algorithms. We include them
to systematically study the representational power of graph neural networks applied to
different graph construction methods. However, we speculate that using these tasks as
pre-training objectives for neural networks that are later fine-tuned to specific (data-poor)
tasks may be a successful strategy which we plan to study in future work.

Our benchmark data is extracted from the 8705 linear and 8425 non-linear Linear
Integer Arithmetic (LIA) problems in the CHC-COMP repository! (see Table 1 in the
competition report [20]). The verification problems come from various sources (e.g.,
higher-order program verification benchmark? and benchmarks generated with JayHorn?),

Thttps://chc-comp.github.io/
2https://github.com /chc-comp /hopv
3https://github.com/chc-comp/jayhorn-benchmarks



therefore cover programs with different size and complexity. We collect and form the train,
valid, and test data using the predicate abstraction-based model checker Eldarica [21].
We implement R-HyGNNs?* based on the framework tf2 gnn®. Our code is available in
a Github repository®. For both graph representations, even if the predicted accuracy
decreases along with the increasing difficulty of tasks, for undecidable problems in Task
4, R-HyGNN still achieves high accuracy, i.e., 91% and 94% for constraint graph and
CDHG, respectively. Moreover, in Task 5, despite the high accuracy (96%) achieved by
CDHG, R-HyGNN has a perfect prediction on one of the graphs consisting of more than
290 clauses, which is impossible to achieve by learning simple patterns (e.g., predict the
clause including false as positive). Overall, our experiments show that our framework
learns not only the explicit syntax but also intricate semantics.

Contributions of the paper. (i) We encode CHCs into two graph representations,
emphasising abstract program syntactic and semantic information, respectively. (ii) We
extend a message passing-based GNN, R-GCN, to R-HyGNN to handle hypergraphs.
(iii) We introduce five proxy supervised learning tasks to explore the capacity of R-
HyGNN to learn semantic information from the two graph representations. (iv) We
evaluate our framework on the CHC-COMP benchmark and show that this framework
can learn intricate semantic information from CHCs and has the potential to produce
good heuristics for program verification.

2. Background

2.1. From Program Verification to Horn clauses

Constrained Horn Clauses are logical implications involving unknown predicates. They
can be used to encode many formalisms, such as transition systems, concurrent systems,
and interactive systems. The connections between program logic and CHCs can be bridged
by Floyd-Hoare logic [22, 23|, allowing to encode program verification problems into the
CHC satisfiability problems [24]. In this setting, a program is guaranteed to satisfy a
specification if the encoded CHCs are satisfiable, and vice versa.

We write CHCs in the form H < By A -+ A By A, where (i) B; is an application g;(%;)
of the relation symbol g; to a list of first-order terms ¢;; (ii) H is either an application
q(t), or false; (iii) ¢ is a first-order constraint. Here, H and By A --- A B, A ¢ in the left
and right hand side of implication < are called “head" and “body", respectively.

An example in Figure 1 explains how to encode a verification problem into CHCs. In
Figure la, we have a verification problem, i.e., a C program with specifications. It has an
external input n, and we can initially assume that x == n,y == n,and, n >= 0. While
x is not equal to 0, x and y are decreased by 1. The assertion is that finally, y == 0.
This program can be encoded to the CHC shown in Figure 1b. The variables z and y

“https://github.com/ChenchengLiang /tf2-gnn
Shttps://github.com /microsoft /tf2-gnn
Shttps://github.com/ChenchenglLiang/Systematic- Predicate- Abstraction-using-Machine-Learning



Lo(n) < true line 0
Li(n) < Lo(n) line 1
extern int n; Lo(z,y,n) < Li(n) line 2
v0|di:1ta|>n<y(3,f Ls(z,y,n) < La(z,y,n) An>0
assume (x=n && y=—n && n>=0); ANz=nAy=n line 3
while (x!=0){ Ls(z,y,n) + Ls(z,y,n) Az =0 line 4
;:: Ly(z,y,n) + Ls(z,y,n) Az #0 line 4
} Ls(z,y,n) + Ly(x’,y,n)Ax=2"—1 line5
3 assert (y==0); L¢(z,y,n) + Ls(z,y',n) Ay =9y —1 line6
Ls(x,y,n) < Lg(z,y,n) line 6
(a) An verification problem written in C. false < Lg(z,y,n) Ay #0 line 8
b) CHCs encoded from C program in Figure la.
L(z,y,n) < n>0Ax=nAy=n line 3
L(z,y,n) < L', ¢/, " )AN2' 0Nz =2"—1Ay=y —1An=n" line 47
false < L(z,y,n) Az =0Ay #0 line 8
(c) Simplified CHCs from Figure 1b.

Figure 1: An example to show how to encode a verification problem written in C to CHCs. For the C
program, the left-hand side numbers indicate the line number. The line numbers in Figure 1b and 1c
correspond to the line in Figure 1a. For example, the line Ly(n) < true in Figure 1b is transformed

from line 1 “extern int n ;" in Figure 1a.

are quantified universally. We can further simplify the CHCs in Figure 1b to the CHCs
shown in Figure lc without changing the satisfiability by some preprocessing steps (e.g.,
inlining and slicing) [25]. For example, the first CHC encodes line 3, i.e., the assume
statement, the second clause encodes lines 4-7, i.e., the while loop, and the third clause
encodes line 8, i.e., the assert statement in Figure la. Solving the CHCs is equivalent
to answering the verification problem. In this example, with a given n, if the CHCs are
satisfiable for all x and y, then the program is guaranteed to satisfy the specifications.

2.2. Graph Neural Networks

Let G = (V,R, E, X, /) denote a graph in which v € V is a set of nodes, r € R is a set of
edge types, E € V x V x R is a set of typed edges, x € X is a set of node types, and
{:v — x is a labelling map from nodes to their type. A tuple e = (u,v,r) € F denotes
an edge from node u to v with edge type 7.

Message passing-based GNNs use a neighbourhood aggregation strategy, where at
timestep ¢, each node updates its representation h! by aggregating representations of its
neighbours and then combining its own representation. The initial node representation h
is usually derived from its type or label £(v). The common assumption of this architecture
is that after 7' iterations, the node representation h! captures local information within



t-hop neighbourhoods. Most GNN architectures [26, 27| can be characterized by their
used “aggregation” function p and “update” function ¢. The node representation of the
t-th layer of such a GNN is then computed by h! = ¢(p({hl ! | u € NI,r € R}),hi 1Y),
where R is a set of edge type and N is the set of nodes that are the neighbors of v in
edge type r.

A closed GNN architecture to the R-HyGNN is R-GCN [17]. They update the node
representation by

1 _ _
By =0(} > —Wihi '+ Wohi™), (1)
reRueN?; 7’

where W, and Wy are edge-type-dependent trainable weights, ¢, , is a learnable or fixed
normalisation factor, and o is a activation function.

3. Graph Representations for CHCs

Graphs as a representation format support arbitrary relational structure and thus can
naturally encode information with rich structures like CHCs. We define two graph
representations for CHCs that emphasize the program syntax and semantics, respectively.
We map all symbols in CHCs to typed nodes and use typed edges to represent their
relations. In this section, we give concrete examples to illustrate how to construct the
two graph representations from a single CHC modified from Figure lc. In the examples,
we first give the intuition of the graph design and then describe how to construct the
graph step-wise. To better visualize how to construct the two graph representations in
Figures 2 and 3, the concrete symbol names for the typed nodes are shown in the blue
boxes. R-HyGNN is not using these names (which, as a result of repeated transformations,
usually do not carry any meaning anyway) and only consumes the node types. The
formal definitions of the graph representations and the algorithms to construct them
from multiple CHCs are in the full version of this paper [28]. Note that the two graph
representations in this study are designed empirically. They can be used as a baseline to
create variations of the graphs to fit different purposes.

3.1. Constraint Graph (CG)

Our Constraint graph is a directed graph with binary edges designed to emphasize
syntactic information in CHCs. One concrete example of constructing the constraint
graph for a single CHC L(z,y,n) + L(z’,y',n') Az #0Az =2’ — 1Ay =y — 1 modified
from Figure 1c is shown in Figure 2. The corresponding node and edge types are described
in Tables 2 and 3 in the full version of this paper [28].

We construct the constraint graph by parsing the CHCs in three different aspects
(relation symbol, clause structure, and constraint) and building relations for them. In
other words, a constraint graph consists of three layers: the predicate layer depicts the
relation between relation symbols and their arguments; the clause layer describes the
abstract syntax of head and body items in the CHC; the constraint layer represents the
constraint by abstract syntax trees (ASTs).



CHC: L(z,y,n) « L(z',y/, W) Az £0 Az =a' —1Ay=y —1|Step4: L(z,y,n) < L(z',y/ ;') Az # 0Nz =2 —1Ay=y -1

Step 1: L(z,y,n) < L(z',y',n')| Step 2: L(z,y,n) « L(z',y/,n') Predicate layer

W @
AT =3
_ \Q """"""""""""""""" AN
RSA S
U:[E @ Clause layer X
|
\@‘9 1 CA/@
Step&x;ﬁO/\m:x'fl/\y*y’fl
1= =
oP3
é U D @ Q
Constraint A
layer N

Figure 2: Construct constraint graph from the CHC L(z,y,n) < L(z',y',n') ANz # 0Nz =
2’ — 1Ay =1y —1. Note that some nodes have multiple concrete symbol names (e.g., node rsa; has
two concrete names, = and z’) since one relation symbol may bind with different arguments.

Constructing a constraint graph. Now we give a concrete example to describe how to
construct a constraint graph for a single CHC L(z,y,n) + L(z',y',n ) Az £A#0ANz =
2 — 1Ay =1y — 1 step-wise. All steps correspond to the steps in Figure 2. In the
first step, we draw relation symbols and their arguments as typed nodes and build the
connection between them. In the second step, we construct the clause layer by drawing
clauses, the relation symbols in the head and body, and their arguments as typed nodes
and build the relation between them. In the third step, we construct the constraint
layer by drawing ASTs for the sub-expressions of the constraint. In the fourth step, we
add connections between three layers. The predicate and clause layer are connected by
the relation symbol instance (RSI) and argument instance (AI) edges, which means the
elements in the predicate layer are instances of the clause layer. The clause and constraint
layers are connected by the GUARD and DATA edges since the constraint is the guard
of the clause implication, and the constraint and clause layer share some elements.

3.2. Control- and Data-flow Hypergraph (CDHG)

In contrast to the constraint graph, the CDHG representation emphasizes the semantic
information (control and data flow) in the CHCs by hyperedges which can join any number
of vertices. To represent control and data flow in CDHG, first, we preprocess every CHC
and then split the constraint into control and data flow sub-formulas.

Normalization. We normalize every CHC by applying the following rewriting steps:
(i) We ensure that every relation symbol occurs at most once in every clause. For instance,
the CHC g(a) < q(b) A g(¢) has multiple occurrences of the relation symbol ¢, and we



Table 2
Control- and data-flow sub-formula in constraints for the normalized CHCs from Figure 1c

Normalized CHCs Control-flow sub-formula Data-flow sub-formula
L(z,y,n) < n>0Az=nAy=n n>0 T=n,y="n
L(z,y,n) «+ L'(z",y',n) ANz £0A x#0 z=x -ly=9y —1
r=x —-1ANy=y —1

L'z, y,n') + L(z,y,n) Az’ =z A empty =z,y =yn =n
y=yAn =n

false « L(z,y,n) Az =0Ay #0 y#0 =0

normalize it to equi-satisfiable CHCs ¢(a) + ¢'(b) A ¢"(c),q'(b) + q(b') Ab =¥ and
q"(¢) < q(d) Ne = . (ii) We associate each relation symbol ¢ with a unique vector
of pair-wise distinct argument variables Z,, and rewrite every occurrence of ¢ to the
form ¢(z,). In addition, all the argument vectors z, are kept disjoint. The normalized
CHCs from Figure 1lc are shown in Table 2.

Splitting constraints into control- and data-flow formulas. We can rewrite the con-
straint ¢ to a conjunction ¢ = @1 A --- A @i, k € N . The sub-formula ¢; is called a
“data-flow sub-formula” if and only if it can be rewritten to the form x = () such that
(i)  is one of the arguments in head ¢(Z,); (ii) ¢(¥) is a term over variables g, where each
element of 7 is an argument of some body literal ¢'(Z, ). We call all other ¢; “control-flow
sub-formulas”. A constraint ¢ can then be represented by ¢ = g1 A+~ Agm Adi A~ - ANdp,
where m,n € N and g; and d; are the control- and data-flow sub-formulas, respectively.
The control and data flow sub-formulas for the normalized CHCs of our running example
are shown in Table 2.

Constructing a CDHG. The CDHG represents program control- and data-flow by
guarded control-flow hyperedges CFHE and data-flow hyperedges DFHE. A CFHE edge
denotes the flow of control from the body to head literals of the CHC. A DFHE edge
denotes how data flows from the body to the head. Both control- and data-flow are
guarded by the control flow sub-formula.

Constructing the CDHG for a normalized CHC L(x,y,n) < L'(«’,y', ") ANz #0Az =
2’ — 1Ay =19 —1is shown in Figure 3. The corresponding node and edge types are
described in Tables 5 and 6 in the full version of this paper [28].

In the first step, we draw relation symbols and their arguments and build the relation
between them. In the second step, we add a guard node and draw ASTSs for the control flow
sub-formulas. In the third step, we construct guarded control-flow edges by connecting
the relation symbols in the head and body and the guard node, which connects the root
of control flow sub-formulas. In the fourth step, we construct the ASTs for the right-hand
side of every data flow sub-formula. In the fifth step, we construct the guarded data-flow
edges by connecting the left- and right-hand sides of the data flow sub-formulas and the
guard node. Note that the diamond shapes in Figure 3 are not nodes in the graph but
are used to visualize our (ternary) hyperedges of types CFHE and DFHE. We show it in
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Figure 3: Construct the CDHG from the CHC L(z,y,n) + L'(z/,y/,n')Ax £0Ax=a" — 1Ay =
y — 1.

this way to visualize CDHG better.

4. Relational Hypergraph Neural Network

Different from regular graphs, which connect nodes by binary edges, CDHG includes
hyperedges which connect arbitrary number of nodes. Therefore, we extend R-GCN to
R-HyGNN to handle hypergraphs. The updating rule for node representation at time
step t in R-HyGNN is

hy=ReLUCY_ D> > Wi -llhi [uee]), (2)

r€ER pEPr ecEyP

where [|{-} denotes concatenation of all elements in a set, r € R = {r; | i € N} is the
set of edge types (relations), p € P, = {p; | j € N} is the set of node positions under
edge type r, Wrtﬁp denotes learnable parameters when the node is in the pth position
with edge type r, and e € Ey* is the set of hyperedges of type r in the graph in which
node v appears in position p, where e is a list of nodes. The updating process for the
representation of node v at time step 1 is illustrated in Figure 4.

Note that different edge types may have the same number of connected nodes. For
instance, in CDHG, CFHE and DFHE are both ternary edges.
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Figure 4: An example to illustrate how to update node representation for R-HyGNN using (2). At
the right-hand side, there are three types of edges connected with node 1. We compute the updated
representation h} for node 1 at the time step 1. || means concatenation. w; is the initial feature
vector of node i. The red blocks are the trace of the updating for node 1. The edge type 1 is a unary
edge and is a self-loop. It has one set of learnable parameters as the update function i.e., Wy 1.
The edge type 2 is binary edge, it has two update functions i.e., Wy 1 and W,q p2. Node 1 is in
the first position in edge [1,2], [1,3], [1,4], and [1,5], so the concatenated node representation will
be updated by W, ,1 . On the other hand, for the other two edges [6,1] and [7,1], node 1 is in the
second position, so the concatenated node representation will be updated by W, 2. For edge type
3, the same rule applies, i.e., depending on node 1's position in the edge, the concatenated node
representation will go through different parameter sets. Since there is no edge that node 1 is in the
second position, we use a dashed box and arrow to represent it. The aggregation is to add all updated
representations from different edge types.

Overall, our definition of R-HyGNN is a generalization of R-GCN. Concretely, it can
directly be applied to the special-case of binary graphs, and in that setting is slightly
more powerful as each message between nodes is computed using the representations of
both source and target nodes, whereas R-GCN only uses the source node representation.



4.1. Training Model

The end-to-end model consists of three components: the first component is an embedding
layer, which learns to map the node’s type (encoded by integers) to the initial feature
vectors; the second component is R-HyGNN, which learns program features; the third
component is a set of fully connected neural networks, which learns to solve a specific
task by using gathered node representations from R-HyGNNs. All parameters in these
three components are trained together. Note that different tasks may gather different
node representations. For example, Task 1 gathers all node representations, while Task 2
only gathers node representations with type rs.

We set all vector lengths to 64, i.e., the embedding layer output size, the middle layers’
neuron size in R-HyGNNs, and the layer sizes in fully connected neural networks are
all 64. The maximum training epoch is 500, and the patient is 100. The number of
message passing steps is 8 (i.e., (2) is applied eight times). For the rest of the parameters
(e.g., learning rate, optimizer, dropout rate, etc.), we use the default setting in the
tf2 _gnn framework. We set these parameters empirically according to the graph size
and the structure. We apply these fixed parameter settings for all tasks and two graph
representations without fine-tuning.

5. Proxy Tasks

We propose five proxy tasks with increasing difficulty to systematically evaluate the
R-HyGNN on the two graph representations. Tasks 1 to 3 evaluate if R-HyGNN can
solve general problems in graphs. In contrast, Tasks 4 and 5 evaluate if combining our
graph representations and R-HyGNN can learn program features to solve the encoded
program verification problems. We first describe the learning target for every task and
then explain how to produce training labels and discuss the learning difficulty.

Task 1: Argument identification. For both graph representations, the R-HyGNN model
performs binary classification on all nodes to predict if the node type is a relation symbol
argument (rsa) and the metric is accuracy. The binary training label is obtained by
reading explicit node types. This task evaluates if R-HyGNN can differentiate explicit node
types. This task is easy because the graph explicitly includes the node type information
in both typed nodes and edges.

Task 2: Count occurrence of relation symbols in all clauses. For both graph repre-
sentations, the R-HyGNN model performs regression on nodes with type rs to predict
how many times the relation symbols occur in all clauses. The metric is mean square
error. The training label is obtained by counting the occurrence of every relation symbol
in all clauses. This task is designed to see if R-HyGNN can correctly perform a counting
task. For example, the relation symbol L occurs four times in all CHCs in Figure 2, so
the training label for node L is value 4. This task is harder than Task 1 since it needs to
count the connected binary edges or hyperedges for a particular node.



Task 3: Relation symbol occurrence in SCCs. For both graph representations, the
R-HyGNN model performs binary classification on nodes with type rs to predict if this
node is an SCC (i.e., in a cycle) and the metric is accuracy. The binary training label is
obtained using Tarjan’s algorithm [19]. For example, in Figure 2, L is an SCC because
L and L’ construct a cycle by L <~ L' and L' +~ L. This task is designed to evaluate
if R-HyGNN can recognize general graph structures such as cycles. This task requires
the model to classify a graph-theoretic object (SCC), which is harder than the previous
two tasks since it needs to approximate a concrete algorithm rather than classifying or
counting explicit graphical elements.

Task 4: Existence of argument bounds. For both graph representations, we train
two independent R-HyGNN models which perform binary classification on nodes with
type rsa to predict if individual arguments have (a) lower and (b) upper bounds in the
least solution of a set of CHCs, and the metric is accuracy. To obtain the training label,
we apply the Horn solver Eldarica to check the correctness of guessed (and successively
increased) lower and upper arguments bounds; arguments for which no bounds can be
shown are assumed to be unbounded. We use a timeout of 3 s for the lower and upper
bound of a single argument, respectively. The overall timeout for extracting labels from
one program is 3 hours. For example, consider the CHCs in Fig. 1c. The CHCs contain a
single relation symbol L; all three arguments of L are bounded from below but not from
above. This task is (significantly) harder than the previous three tasks, as boundedness
of arguments is an undecidable property that can, in practice, be approximated using
static analysis methods.

Task 5: Clause occurrence in counter-examples This task consists of two binary
classification tasks on nodes with type guard (for CDHG), and with type clause (for
constraint graph) to predict if a clause occurs in the counter-examples. Those kinds
of nodes are unique representatives of the individual clauses of a problem. The task
focuses on unsatisfiable sets of CHCs. Every unsatisfiable clause set gives rise to a set of
minimal unsatisfiable subsets (MUSes); MUSes correspond to the minimal CEs of the
clause set. Two models are trained independently to predict whether a clause belongs to
(a) the intersection or (b) the union of the MUSes of a clause set. The metric for this
task is accuracy. We obtain training data by applying the Horn solver Eldarica [25], in
combination with an optimization library that provides an algorithm to compute MUSes”.
This task is hard, as it attempts the prediction of an uncomputable binary labelling of
the graph.

6. Evaluation

We first describe the dataset we use for the training and evaluation and then analyse the
experiment results for the five proxy tasks.

Thttps://github.com/uuverifiers/lattice-optimiser /



Table 3

The number of labeled graph representations extracted from a collection of CHC-COMP benchmark
[20]. For each SMT-LIB file, the graph representations for Task 1,2,3,4 are extracted together using
the timeout of 3 hours, and for task 5 is extracted using 20 minutes timeout. Here, T. denotes Task.

SMT-LIB files Constraint graphs CDHGs

Total | Unsat | T.1-4 | T.5(a) | T.5(b) | T.1-4 | T.5(a) | T.5 (b)
Linear LIA 8705 1659 | 2337 881 857 3029 880 883
Non-linear LIA | 8425 3601 3376 1141 1138 4343 1497 1500
Aligned 17130 | 5260 | 5602 | 1927 1914 5602 | 1927 1914

6.1. Benchmarks and Dataset

Table 3 shows the number of labelled graph representations from a collection of CHC-
COMP benchmarks [20]. All graphs were constructed by first running the preprocessor
of Eldarica [25] on the clauses, then building the graphs as described in Section 3,
and computing training data. For instance, in the first four tasks we constructed 2337
constraint graphs with labels from 8705 benchmarks in the CHC-COMP LIA-Lin track
(linear Horn clauses over linear integer arithmetic). The remaining 6368 benchmarks are
not included in the learning dataset because when we construct the graphs, (1) the data
generation process timed out, or (2) the graphs were too big (more than 10,000 nodes), or
(3) there was no clause left after simplification. In Task 5, since the label is mined from
CEs, we first need to identify unsat benchmarks using a Horn solver (1-hour timeout),
and then construct graph representations. We obtain 881 and 857 constraint graphs when
we form the labels for Task 5 (a) and (b), respectively, in LIA-Lin.

Finally, to compare the performance of the two graph representations, we align the
dataset for both two graph representations to have 5602 labelled graphs for the first four
tasks. For Task 5 (a) and (b), we have 1927 and 1914 labelled graphs, respectively. We
divide them to train, valid, and test sets with ratios of 60%, 20%, and 20%. We include
all corresponding files for the dataset in a Github repository 8.

6.2. Experimental Results for Five Proxy Tasks

From Table 4, we can see that for all binary classification tasks, the accuracy for both
graph representations is higher than the ratios of the dominant labels. For the regression
task, the scattered points are close to the diagonal line. These results show that R-HyGNN
can learn the syntactic and semantic information for the tasks rather than performing
simple strategies (e.g., fill all likelihood by 0 or 1). Next, we analyse the experimental
results for every task.

Task 1: Argument identification. When the task is performed in the constraint graph,
the accuracy of prediction is 100%, which means R-HyGNN can perfectly differentiate if a
node is a relation symbol argument rsa node. When the task is performed in CDHG, the
accuracy is close to 100% because, unlike in the constraint graph, the number of incoming

Shttps://github.com/ChenchengLiang/Horn-graph-dataset



and outgoing edges are fixed (i.e., RSA and AI), the rsa nodes in CDHG may connect
with a various number of edges (including RSA, AST 1, AST 2, and DFHE) which
makes R-HyGNN hard to predict the label precisely.

Besides, the data distribution looks very different between the two graph representations
because the normalization of CHCs introduces new clauses and arguments. For example,
in the simplified CHCs in Figure lc, there are three arguments for the relation symbol
L, while in the normalized clauses in Figure 2, there are six arguments for two relation
symbols L and L'. If the relation symbols have a large number of arguments, the difference
in data distribution between the two graph representations becomes larger. Even though
the predicted label in this task cannot directly help solve the CHC-encoded problem, it is
important to study the message flows in the R-HyGNNs.

Task 2: Count occurrence of relation symbols in all clauses. In the scattered plots in
Figure 5, the x- and y-axis denote true and the predicted values in the logarithm scale,
respectively. The closer scattered points are to the diagonal line, the better performance
of predicting the number of relation symbol occurrences in CHCs. Both CDHG and
constraint graph show good performance (i.e., most of the scattered points are near the
diagonal lines). This syntactic information can be obtained by counting the CFHE and
RSIT edges for CDHG and constraint graph, respectively. When the number of nodes is
large, the predicted values are less accurate. We believe this is because graphs with a
large number of nodes have a more complex structure, and there is less training data.
Moreover, the mean square error for the CDHG is larger than the constraint graph
because normalization increases the number of nodes and the maximum counting of
relation symbols for CDHG, and the larger range of the value is, the more difficult for
regression task. Notice that the number of test data (1115) for this task is less than the
data in the test set (1121) shown in Table 3 because the remaining six graphs do not
have a rs node.

Task 3: Relation symbol occurrence in SCCs. The predicted high accuracy for both
graph representations shows that our framework can approximate Tarjan’s algorithm [19].
In contrast to Task 2, even if the CDHG has more nodes than the constraint graph on
average, the CDHG has better performance than the constraint graph ;, which means the
control and data flow in CDHG can help R-HyGNN to learn graph structures better. For
the same reason as task 2, the number of test data (1115) for this task is less than the
data in the test set (1121).

Task 4: Existence of argument bounds. For both graph representations, the accuracy
is much higher than the ratio of the dominant label. Our framework can predict the
answer for undecidable problems with high accuracy, which shows the potential for guiding
CHC solvers. The CDHG has better performance than the constraint graph, which might
be because predicting argument bounds relies on semantic information. The number of
test data (1028) for this task is less than the data in the test set (1121) because the
remaining 93 graphs do not have a rsa node.
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Figure 5: Scatter plot for Task 2. The x- and y-axis are in logarithmic scales.

Task 5: Clause occurrence in counter-examples. For Task (a) and (b), the overall
accuracy for two graph representations is high. We manually analysed some predicted
results by visualizing the (small) graphs?. We identify some simple patterns that are
learned by R-HyGNNs. For instance, the predicted likelihoods are always high for the rs
nodes connected to the false nodes. One promising result is that the model can predict all
labels perfectly for some big graphs'® that contain more than 290 clauses, which confirms
that the R-HyGNN is learning certain intricate patterns rather than simple patterns. In
addition, the CDHG has better performance than the constraint graph , possibly because
semantic information is more important for solving this task.

7. Related Work

Learning to represent programs. Contextual embedding methods (e.g. transformer [29],
BERT [30], GPT [31], etc.) achieved impressive results in understanding natural languages.
Some methods are adapted to explore source code understanding in text format (e.g.
CodeBERT [32], cuBERT [33], etc.). But, the programming language usually contains rich,
explicit, and complicated structural information, and the problem sets (learning targets)
of it [34, 35] are different from natural languages. Therefore, the way of representing the
programs and learning models should adapt to the programs’ characteristics. Recently, the
frameworks consisting of structural program representations (graph or AST) and graph or
tree-based deep learning models made good progress in solving program language-related
problems. For example, [36] represents the program by a sequence of code subtokens

“https://github.com/ChenchengLiang/Horn-graph-dataset /tree/main /example-analysis/
task5-small-graphs
Ohttps://github.com/ChenchengLiang/Horn-graph-dataset /tree/main /example-analysis /
taskb-big-graphs



Table 4

Experiment results for Tasks 1,3,4,5. Both the fourth and fifth tasks consist of two independent
binary classification tasks. Here, + and — stands for the positive and negative label. The T and P
represent the true and predicted labels. The Acc. is the accuracy of binary classifications. The Dom.
is dominant label ratio. Notice that even if the two graph representations originate from the same
original CHCs, the label distributions are different since the CDHG is constructed from normalized
CHCs.

Constraint graph CDHG
Task | Files T P + - Acc. Dom. | + - Acc. Dom.
+ 93863 | 0 . ., | 142598 | 0 . ,
1 1121 - 0 1835071 100% | 95.1% 10 381445 99.9% | 72.8%
¥ 3204 | 133 , ., | 8262 |58 . ,
3 1115 — 301 7493 96.1% | 70.1% 15 8503 99.6% | 50.7%
¥ 13685 | 5264 , ., | 30845 | 4557 . ,
4 (a) s oo 1055 912% | 79.7% [opee—t1oaezst 943% | 75.2%
+ 18888 | 4792 . o, | 41530 | 4360 . .
4 (b) - o1 eegon | 9L4% | T48% (oo 943% | 67.8%
i 1048 | 281 , ., | 1230 | 206 . .
5(a) | 386 — e 163 95.0% | 84.7% (- S036 | 96:9% | 86.4%
5(b) | 383 | ggzo 2228 84.6% | 53.1% 3323 jgél 90.6% | 54.8%

and predicts source code snippets summarization by a novel convolutional attention
network. Code2vec [37] learns the program from the paths in its AST and predicts
semantic properties for the program using a path-based attention model. [38] use AST to
represent the program and classify programs according to functionality using the tree-
based convolutional neural network (TBCNN). Some studies focus on defining efficient
program representations, others focus on introducing novel learning structures, while we
do both of them (i.e. represent the CHC-encoded programs by two graph representations
and propose a novel GNN structure to learn the graph representations).

Deep learning for logic formulas. Since deep learning is introduced to learn the
features from logic formulas, an increasing number of studies have begun to explore graph
representations for logic formulas and corresponding learning frameworks because logic
formulas are also highly structured like program languages. For instance, DeepMath [39]
had an early attempt to use text-level learning on logic formulas to guide the formal
method’s search process, in which neural sequence models are used to select premises
for automated theorem prover (ATP). Later on, FormulaNet [40] used an edge-order-
preserving embedding method to capture the structural information of higher-order logic
(HOL) formulas represented in a graph format. As an extension of FormulaNet, [41]
construct syntax trees of HOL formulas as structural inputs and use message-passing
GNNs to learn features of HOL to guide theorem proving by predicting tactics and tactic
arguments at every step of the proof. LERNA [42] uses convolutional neural networks
(CNNs) [43] to learn previous proof search attempts (logic formulas) represented by graphs



to guide the current proof search for ATP. NeuroSAT [44, 45] reads SAT queries (logic
formulas) as graphs and learns the features using different graph embedding strategies
(e.g. message passing GNNs) [46, 47, 26]) to directly predict the satisfiability or guide the
SAT solver. Following this trend, we introduce R-HyGNN to learn the program features
from the graph representation of CHCs.

Graph neural networks. Message passing GNNs [26], such as graph convolutional
network (GCN) [17], graph attention network (GAT) [48], and gated graph neural network
(GGNN) [47] have been applied in several domains ranging from predicting molecule
properties to learning logic formula representations. However, these frameworks only
apply to graphs with binary edges. Some spectral methods have been proposed to deal
with the hypergraph [49, 50]. For instance, the hypergraph neural network (HGNN) [51]
extends GCN proposed by [52] to handle hyperedges. The authors in [53] integrate
graph attention mechanism [48] to hypergraph convolution [52] to further improve the
performance. But, they cannot be directly applied to the spatial domain. Similar to the
fixed arity predicates strategy described in LambdaNet [18], R-HyGNN concatenates node
representations connected by the hyperedge and updates the representation depending on
the node’s position in the hyperedge.

8. Conclusion and Future Work

In this work, we systematically explore learning program features from CHCs using
R-HyGNN, using two tailor-made graph representations of CHCs. We use five proxy
tasks to evaluate the framework. The experimental results indicate that our framework
has the potential to guide CHC solvers analysing Horn clauses. In future work, among

others we plan to use this framework to filter predicates in Horn solvers applying the
CEGAR model checking algorithm.
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Abstract. The Relational Hyper-Graph Neural Network (R-HyGNN)
was introduced in [1] to learn domain-specific knowledge from program
verification problems encoded in Constrained Horn Clauses (CHCs). It
exhibits high accuracy in predicting the occurrence of CHCs in coun-
terexamples. In this research, we present an R-HyGNN-based frame-
work called MUSHyperNet. The goal is to predict the Minimal Unsat-
isfiable Subsets (MUSes) (i.e., unsat core) of a set of CHCs to guide
an abstract symbolic model checking algorithm. In MUSHyperNet, we
can predict the MUSes once and use them in different instances of the
abstract symbolic model checking algorithm. We demonstrate the efficacy
of MUSHyperNet using two instances of the abstract symbolic model-
checking algorithm: Counter-Example Guided Abstraction Refinement
(CEGAR) and symbolic model-checking-based (SymEx) algorithms. Our
framework enhances performance on a uniform selection of benchmarks
across all categories from CHC-COMP, solving more problems (6.1%
increase for SymEx, 4.1% for CEGAR) and reducing average solving time
(13.3% for SymEx, 7.1% for CEGAR).

Keywords: Automatic program verification - Constrained Horn
clauses + Graph Neural Networks

1 Introduction

Constrained Horn Clauses (CHCs) [2] are logical formulas that can describe
program behaviors and specifications. Encoding program verification problems
in CHCs and solving them (checking CHCs’ satisfiability) has been an active
research area for a number of years [3,4]. If the encoded CHCs are satisfiable,
the corresponding program verification problem is safe; if not, it is unsafe.
Solving a set of CHCs means that we either find an interpretation for the
predicate (relation) symbols and variables that satisfies all the clauses, or prove
that no such interpretation exists. Various techniques, such as Counterexample
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Guided Abstraction Refinement (CEGAR) [5] and IC3 [6], have been utilized
for this purpose. However, due to the undecidability of solving CHCs, we need
carefully designed or tuned heuristics for specific instances.

In this paper, we consider Minimal Unsatisfiable Subsets (MUSes) [7] of sets
of CHCs to support the solving process. Given an unsatisfiable set of CHCs,
each MUS is a subset that is again unsatisfiable, but removing any CHC from
an MUS makes it satisfiable. Understanding MUSes of a set of CHCs can guide
solvers to focus on error-prone clauses [8, Section 3.1]: for an unsatisfiable set of
CHCs, evaluating the satisfiability of MUSes first can quickly identify unsatisfi-
able CHCs, eliminating the need for a comprehensive check. In a satisfiable set
of CHCs, examining MUSes first can provide a better starting point for refining
potentially problematic constraints. This guidance can help the solver converge
towards a solution more efficiently. Manually designed heuristics to find MUSes
involves summarizing and generalizing the features of a set of CHCs from exam-
ples, which can be replaced by data-driven methods.

Various studies that apply deep learning to formal methods for verification
have been published in the recent past, e.g., [9-12]. Primarily, deep learning
serves as a feature extractor, which can automatically summarize and generalize
program features from examples, alleviating the need for manual crafting and
tuning of various heuristics. In addition, the idea of representing logic formulas
as graphs and using Graph Neural Networks (GNNs) [13] to guide solvers has
been employed in many successful studies [14-17].

However, we are not aware of any study that applies GNNs to guide CHC-
based symbolic model checking techniques. The main contribution of this paper
is to train a GNN model to predict MUSes of a set of CHCs. We train a GNN
using the CHC-R-HyGNN framework [1] to predict values between 0 and 1,
representing the probabilities of CHCs being elements of MUSes. For example, we
assume that a set C = {c1, 2, c3} of CHCs has one MUS {c;, c2}. The predicted
probabilities for c¢1,cs, and ¢s being in the MUS could be 0.9, 0.8, and 0.1,
respectively. We propose several strategies that use the predicted probability
to guide an abstract symbolic model checking algorithm. The strategies can be
instantiated for different algorithms on CHCs, such as CEGAR- and symbolic
execution-based satisfiability checkers.

Figure1 depicts an overview of our framework MUSHyperNet. Firstly, we
encode the program verification problem into a set of CHCs. Secondly, we use the
graph encoder in the CHC-R-HyGNN framework [1] to convert the set of CHCs
into a graph format. Then, we train a GNN model named Relational Hypergraph
Neural Network (R-HyGNN) to predict the probability of each CHC occurring
in MUSes. Finally, we employ the predicted probabilities to guide the abstract
symbolic model checking algorithm by determining the sequence for processing
each CHC in the set of CHCs.

We utilize the same benchmarks as in [1], comprising 17130 Linear Inte-
ger Arithmetic (LIA) problems from the CHC-COMP 2021 repository [18] for
training and evaluating our approach. Further details about the benchmark can
be found in [19, Table1]. The problems for evaluation are uniformly selected



282 P. A. Abdulla et al.

CHC-R-HyGNN framework
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Fig. 1. The CHC-R-HyGNN framework [1] (represented by the round box) comprises a
CHC graph encoder and a GNN known as the Relational Hypergraph Neural Network
(R-HyGNN), which is capable of handling hypergraphs. In our previous work, we intro-
duced the CHC-R-HyGNN framework that employs various proxy tasks to generalize
valuable information for constructing heuristics for CHC-encoded program verification

problems.

from this benchmark and can be found in a public repository [20]. The experi-
mental results show an improvement of up to 4.1% and 6.1% in the number of
solved problems for the CEGAR and SymEx algorithms, respectively. Addition-
ally, the average solving time demonstrates enhancements of 7.1% and 13.3% for
the CEGAR and SymEx algorithms, respectively. In other words, MUSHyperNet
can increase the number of solved problems and decrease the solving time for
problems similar to those in the CHC-COMP benchmark. To the best of our
knowledge, this is the first time unsat core learning has been used successfully
in the context of CHCs.
In summary, our contributions are as follows:

— We develop a GNN-based framework named MUSHyperNet, which trains a
GNN to predict the MUSes of CHCs and utilizes the predicted probabilities
to guide an abstract symbolic model checking algorithm.

— We explore GNN models trained on different datasets and methods for apply-
ing predicted MUSes to guide two instances of the model checking algorithm.

— We evaluate MUSHyperNet on 383 linear and 488 non-linear LIA problems,
uniformly sampled from the CHC-COMP benchmark [19]. The improvements
in the number of solved problems and average solving time are up to 6.1%
and 13.3% for the SymEx, and 4.1% and 7.1% for the CEGAR.

2 Preliminaries

We first introduce required notation for multi-sorted first-order logic, and define
Constrained Horn Clauses (CHCs) and the encoding of a program verification
problem as CHCs. Finally, we explain basic concepts of Graph Neural Network
(GNN) and introduce Relational Hyper Graph Neural Network (R-HyGNN).

2.1 Notations

We assume familiarity with standard multi-sorted first-order logic (e.g., see [21]).
A first-order language £ is defined by a signature X' = (S, R, F, X), where S is



Boosting Constrained Horn Solving by Unsat Core Learning 283

a non-empty set of sorts; R is a set of fixed-arity predicate (relation) symbols,
each of which is associated with a list of argument sorts; F is a set of fixed-
arity function symbols, each of which is associated with a list of argument sorts
and a result sort; and X = UsE s s is a set of sorted variables, where X, are
the variables of sort s. A term t is a variable from X, or an m-ary function
symbol f € F applied to terms t1,...,t, of the right sorts. An atomic formula
(atom) of L is of the form p(t1, ..., t,), where p € R is an n-ary predicate symbol
and tq,...,t, are terms of the right sorts. A formula is a Boolean literal true,
false, an atom, or obtained by applying logical connectives -, A, V, — and
quantifiers V, 3 to formulas. We write implications both left-to-right (¢ — )
and right-to-left (¢ < ¢). A formula is closed if all variables occurring in the
formula are bound by quantifiers.

A multi-sorted structure M = (U, I) for L consists of a set U = |J,.gUs,
being the union of non-empty domains Us of each sort s € S, and an inter-
pretation I such that I(s) = Us for every sort s € S; for each n-ary predicate
symbol p € R with argument sorts s1,...,8,, I(p) C Us, X -+ x Uy, ; and for
each n-ary function symbol f € F with argument sorts si,...,s, and result
sort s, I(f) € U, x -+- x Us, — Us. A variable assignment (3 for the struc-
ture M = (U, I) is a function X — U that maps each variable z € X to an
element of the corresponding domain U,. Given L, a structure M = (U, 1),
and a variable assignment (3, the evaluation of a term or formula is performed
by the function valagp, defined by vala g(z) = B(x) for a variable z € X’
valp g(f(t1, ... tn)) = I(f)|valpm g(tr), ..., valpm g(ts)] for a function f € F;
and valap g(p(te, ..., tn)) = true iff (valap g(t1),...,valpmp(tn)) € I(p). The
evaluation of compound formulas is defined as is common. When M is clear
from the context, we also write valg instead of valaq,g.

We say that a formula ¢ is satisfied in M, 5 if valrg,5(p) = true, and that
it is satisfiable (SAT) if it is satisfied by some M, 3. We say a set I" of formulae
entails a formula ¢, denoted I' |= ¢, if ¢ is satisfied whenever all formulas in I’
are satisfied.

Example 1. We assume a language L consisting of a sort s, two constants a
and b, a unary function symbol f with argument and result of sort s; a binary
predicate symbol p with two arguments of sort s. A structure M = (U, I) can
be defined by Us = Z, I(a) =1, I(b) = 2, I(f)[z] = x+2, and I(p)[z,y] = = < .
The formula ¢ = p(a,b) — p(z, f(a)) is satisfied in M by a variable assignment
B(x) = 1 since valy(p) = I(p)[vals(a), vals(b)] — I(p)[val(x), I(f)vals(x)]] =
—(1<2)Vv1<(1+2)is true. The formula ¢ is satisfiable since valg(p) = true
for M and a variable assignment 3(z) = 1.

2.2 Constraint Horn Clauses

To introduce the notion of constrained Horn clauses, we assume a fixed base
signature ¥ = (S,R,F,X), as well as a unique structure M over this sig-
nature, forming the background theory. In this paper, we mainly consider the
background theory of Linear Integer Arithmetic (LIA), following the SMT-LIB
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standard [22]. We further assume a set R¢ of additional relation symbols that is
disjoint from R, which will be used to formulate the head and body of clauses.

Definition 1 (Constrained Horn clause). Given signature X and the set
Re¢, a Constrained Horn Clause (CHC) is a closed formula in the form

VZ. H—pi1(t1) A Apn(tn) A, (1)
where T is a vector of variables; H is either false or an atom p(t1,...,t,) with
p € R¢; the relation symbols py,...,pn are elements of Ro; and ty,...,t, and

@ are vectors of terms and a formula over X, respectively. We call H the head
and p1(t1) A -+ A pn(tn) A @ the body of the clause, respectively. We call the
formula ¢ in the body the constraint of the clause.

For convenience, in many places we leave out the quantifiers Vz when writing
clauses. A CHC without atoms in its body (the case n = 0) is called a fact. If the
body of a CHC contains zero or one atom, the CHC is called linear. Otherwise,
it is called non-linear.

Solving CHCs boils down to searching interpretations of the relation sym-
bols R¢ that satisfy the CHCs, assuming that all background symbols from X
are interpreted by the fixed structure M:

Definition 2 (Satisfiability of a CHC). A CHC h is satisfiable if there is
a structure Mc = (U, I¢c) for the extended signature Yo = (S, RUR¢,F,X)
such that (i) Ic coincides with I on X, and (ii) Mc satisfies h. A set C of CHC's
is satisfiable if there is an extended structure M simultaneously satisfying all
clauses in C.

Encoding Program Verification Problems using CHCs. A program verification
problem involves checking whether a program adheres to its specified behavior.
One approach to verification is to transform the problem into determining the
satisfiability of a set of CHCs. This can be done, for instance, by encoding the
partial correctness of a procedural imperative program into a negated Existential
positive Least Fixed-point Logic (E4+LFP) formula [4] using the weakest precon-
dition calculus. Generally, encodings are designed such that the set of CHCs is
satisfiable if and only if a program is safe. Various encoding schemes for different
programming languages have been introduced in the literature, e.g., [4].

2.3 Graph Neural Networks

A Graph Neural Network (GNN) [13] is a type of neural network that consists of
Multi-Layer Perceptrons (MLPs) [23]. GNNs operate on graph-structured data
with nodes and edges, making them suitable for logic formulas which can natu-
rally be represented as graphs. A GNN can take a set of typed nodes and edges as
input and output a set of feature representations (vectors of real numbers) asso-
ciated with the properties of the nodes. We refer to them as node representations
in the rest of the sections.
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The Message-Passing based GNN (MP-GNN) [24] is a type of GNN model. It
utilizes an iterative message-passing algorithm in which each node in the graph
aggregates messages from its neighboring nodes to update its own node repre-
sentation. This mechanism assists in identifying the inner connections within
substructures, such as terms and atoms, in graph represented logic formulae.

Formally, let G = (V, E) be a graph, where V is the set of nodes and E is the
set of edges. Let x, be the initial node representation (a vector of random real
numbers) for node v in the graph, and let N, be the set of neighbors of node
v. An MP-GNN consists of a series of T' message-passing steps. At each step ¢,
every node v in the graph updates its node representation as follows:

hy = ¢e(pe({he ! | w € Nu}), b, (2)

where h! € R™ is the updated node representation for node v after ¢ iterations.
The initial node representation, h?, is usually derived from the node type and
given by x,. The node representation of u in the previous iteration ¢t — 1 is hf 1,
and node u is a neighbor of node v. p; : (R”)'N”| — R" is a aggregation function
with trainable parameters (e.g., a MLP followed by sum, min, or max) that
aggregates the node representations of v’s neighboring nodes at the t-th iteration.
¢+ : R™ — R™ is a function with trainable parameters (e.g., a MLP) that takes
the aggregated node representation from p; and the node representation of v
in previous iteration as input, and outputs the updated node representation of
v at the ¢-th iteration. MP-GNN assumes a node can capture local structural
information from ¢-hop’s neighbors by updating the node representation using
aggregated representations of the neighbor nodes.

The final output of the MP-GNN could be the set of updated node represen-
tations for all nodes in the graph after T iterations. These node representations
can be used for a variety of downstream tasks, such as node classification or
graph classification.

Relational Hyper-Graph Neural Network (R-HyGNN) [1] is an extension of
one MP-GNN called Relational Graph Convolutional Networks (R-GCN) [25],
and it is specifically designed to handle labeled hypergraphs.

A labeled (typed) hypergraph is a hypergraph where each vertex (node) and
hyperedge is assigned a type from a predefined set of types. Formally, a labeled
hypergraph LHG is defined as a tuple LHG = (V, E, A\y, Ly, Lg), where V is a
set of elements called vertices (or nodes), Lg is a set of pair consisting of a label
(type) r and the number of nodes k under the label r, E C V* x Lg is a set of
hyperedges in which each hyperedge consists of a non-empty subsets of V" and a
pair (r,k) € Lg. Here, Ay : V — Ly is a labeling function that assigns a type
from the set Ly to each vertex in V. The Ly is a set of possible types (labels)
for the vertices V.

The node representation updating rule of R-HyGNN for one node v at
timestep t is

h?u = ReLU( Z Z W:,z : ”(hfu_llv>hfv_1ilvh'tw_lila7hfﬂ_kl))a
(W1 yeney wg,(r,k)) ie{l,....k},
c Wi =v

=

(3)
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where the pair (r,k) € Lg is the edge type (relation) and the number
of node for a edge (wi,...,wg,(rk)) € E, Wrtl is a matrix of learnable
parameters in time step t for node v = w; in the edge with type r. There
are |Lp| X 32, jyer, (k) x t matrices of learnable parameters in total. Here,

[(REE, .. Rt hiu_iil’ ..., ht; 1) means concatenate v’ neighbour node repre-
sentations in time step ¢ — 1. The initial node representation h? is derived from
the node types Ly .

Intuitively, to update the representation of a node, R-HyGNN first concate-
nates the neighbor representations of node v for each edge from the previous time
step t—1. It then multiplies the concatenated neighbor representations by the cor-
responding matrix of trained parameters (i.e., Wrtl) to derive a local representa-
tion of v. Next, it aggregates the local node representations (e.g., by addition). In

t t—1 t—1  pi—1 t—1
other words, 3w, ... wp.(rk)) 2oie{1,..k}, Wi ll(hi s oo B R s B )
EE wi;=v

can be abstract to pi(|[(hly, ", ..., bl t S hlt oo i t)) where p; s an aggre-
gation function with trainable parameters in I/V]fZ Finally, it applies a ReLLU
function [26] as the update function ¢;. This function takes the aggregated local
node representations as input and produces the final node representation hl.

This updating process for a single node recurs ¢ times.

3 Abstract Symbolic Model Checking for CHCs

The goal of our work is to utilize GNNs to obtain improved state space explo-
ration methods for CHCs. To this end, in this section we introduce an abstract
formulation of CHC state space exploration, covering both the classical CEGAR
approach and exploration in the style of symbolic execution.

3.1 Satisfiability Checking for CHCs

Our Algorithm 1 checks the satisfiability of a given a set C of CHCs by con-
structing an abstract reachability hyper-graph (ARG). An ARG is an over-
approximation of the facts p(a) that are logically entailed by C; by demonstrating
that the atom false does not follow from C, it can be shown that C is satisfiable.
Since each node of an ARG can represent a whole set of facts, a finite ARG can
be a representation even of infinite models of a set C.

We first give an abstract definition of ARGs that does not mandate any par-
ticular symbolic representation of sets of p(a). We later introduce two instances
of this abstract framework.

Like in Sect. 2.2, we denote the set of relation symbols used in CHCs by R¢.
For a k-ary relation symbol p € R¢ with argument sorts s, ..., sk, we write
Rp =P(Us, x ---xUs,) for the set of possible relations represented by p.

Definition 3. An abstract reachability graph for a set C of CHCSs is a hyper-
graph (V| E), where

— the set V' of nodes is a set of pairs (p, R), with p being a relation symbol and
ReRy;
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- FE CV*xCxV is a set of hyper-edges labelled with clauses. For every
edge (v1,...,vn,h,v9) € E, it is the case that:
e the head of a clause h is not false, i.e., h is of the form YZ. po(ty) «
pl(fl) Neee /\pn(fn) N p;
e nodes vy, ...,v, correspond to the head and the body of h, i.e., for i €
{0,...,n} it is the case that v; = (p;, R;) for some R; € Ry, ;
e Ry over-approximates the facts implied by the clause h:

— .\ valg(p) = true and valg(t;) € R; fori={1,...,n}
B}
Ho 2 {valg(to) |f07’ some variable assignment 3
(4)

The algorithm starts with an empty ARG, and then adds nodes and edges to
it until the ARG is complete, which intuitively means that all possible non-trivial
edges are present in the graph. To define the notion of a complete ARG, we first
need to characterize what it means for a clause to correspond to a feasible edge
of the ARG:

Definition 4. A clause h € C is feasible for nodes v1,...,v, € V of an ARG
(V.E) if

— h is of the form ¥YT. H < p1(t1) A+ App(tn) A p;

— nodes vy, . ..,v, correspond to the body of h, i.e., fori € {1,...,n} it is the
case that v; = (pi, R;) for some R; € Ry, ;

— the constraints imposed by ¢ and vy, ...,v, are not contradictory, i.e., there
is a variable assignment 3 such that valg(p) = true and valg(t;) € R; for i =

{1,...,n}.
Definition 5. An ARG (V, E) is complete for a set C of CHCs if

— for every CHC h € C that has a head different from false, and that is feasible
forvi,...,v, €V, there is some edge {(v1,...,vn), h,v0) € E;
— there is no CHC h € C with head false that is feasible for any v1,...,v, € V.

We can finally observe that complete ARGs correspond to models of the
clause set C.

Lemma 1. A set C of CHCs has a complete ARG iff C is satisfiable.

Algorithm 1 describes how ARGs can be constructed for a given clause set C.
The algorithm starts with an empty ARG (V| E), and maintains a queue Q C
C x V* of feasible edges to be added to the graph next. The queue is initialized
with the clauses with empty body, representing the initial states of a program.
Once the queue runs empty, the constructed ARG is complete and the set C has
been shown to be satisfiable.

In each iteration, in lines 5-6 an element (h,v) is picked and removed from
the queue Q. If the head of h is false (line 7), the edge to be added might
be part of a witness of unsatisfiability of C. In this case, it has to be checked
whether the nodes © are over-approximate (line 8); this can happen when the
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Input: A set C of CHCs
Output: Satisfiability of C
Initialise: V:=0,FE:=0,Q :={(h,()) | h€C,h=Vz. H «— ¢}

1 while true do
2 if Q is empty then
3 ‘ return satisfiable
4 else
5 Pick (h,v) € Q to be considered next (guided by GNNs)
6 Q:Q\{(h’vﬂ)}
7 if the head in h is false then
8 if derivation of false is genuine then
9 ‘ return unsatisfiable
10 else
11 Refine over-approximations
12 Delete all affected nodes in (V, E)
13 Regenerate elements in @
14 end
15 else
16 Assume h = V. po(to) < p1(f1) A+ Apn(tn) A
17 Compute new node u = (po, Ro) for (h, )
18 if u €V then
19 V=V U{u}
d € C is feasible for w1, ..., wn,
20 Q::Qu{(d,(w1,...,wm))|u€{w1"”7wm}gv }
21 end
22 E:=EUJU{(v,h,u)}
23 end
24 end
25 end

Algorithm 1: Abstract symbolic model checking algorithm for checking sat-
isfiability of CHCs

containment in (4) is sometimes strict in the constructed ARG, and occurs in
particular when instantiating the abstract algorithm as CEGAR (see Sect. 3.2).
The over-approximation can then be refined in lines 11-13.

If the head of h is not false, a further edge is added to the graph by computing
in line 17 some set Ry satisfying (4). If the resulting node u is new in the graph,
the queue @ is updated by adding possible outgoing edges for u (line 19-20).

In this paper, we apply the GNN-based guidance in line 5. Specifically, we
presume that the GNN can predict the probability of h being in MUSes for each
q = (h,v) € Q. We then combine this probability with certain features of ¢, such
as the number of iterations ¢ € @) has been waiting, to calculate a priority of q.
When selecting an element ¢ from @, we consult this priority. We explain more
details in Sect. 4.
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3.2 CEGAR- And Symbolic Execution-Style Exploration

We now discuss two concrete instantiations of Algorithm 1. The first one, in this
paper called SymEx, resembles the symbolic execution [27] of a program, and
represents the relation R in an ARG node (p, R), for a k-ary relation symbol p,
as a formula over free variables zq,..., zx.

To obtain SymEx, in line 17 of Algorithm 1 the relation Ry is derived from
the nodes ¢ by simple symbolic manipulation. Assuming that v; = (p;, R;) for
i € {1,...,n}, and the relations R; are all represented as formulas, we can define:

Ro[zl,...,zk.] = dz. §:£0AR1[{1]A"'ARn[En]A<p

where the notation R;[t;] expresses that the terms t¢; are substituted for the
free variables z. In our implementation on top of the CHC solver Eldarica [28],
the formula Ry[z1, ..., 2x] is afterwards simplified by eliminating the quantifiers,
albeit only in a best-effort way by running the built-in formula simplifier of
Eldarica. In SymEx, since no over-approximation is applied, the test in line 8
always succeeds, and lines 11-13 are never executed.

Our second instantiation, called CEGAR, is designed following counter
example-guided abstraction refinement [5,29] with Cartesian predicate abstrac-
tion [30]. In this version of the algorithm, we assume that a finite pre-defined
set I, of predicates is available for every relation symbol p. If p is k-ary, then
the elements of II,, are formulas over free variables 21, ..., 2;. The relation R in
a node (p, R) is now represented as a subset of II,,.

In line 17, the set Ry is computed by determining the elements of II,,, that
are entailed by the body of clause h:

Ry = {¢ €1l |ZZEOA/\Rl[fl]/\"'A/\Rn[En]/\90>:¢}

The notation A R;[t;] denotes the conjunction of the elements of R;, with ¢;
substituted for the free variables z.

Over-approximation in CEGAR stems from the fact that a chosen set of pred-
icates II, will oftentimes not be able to exactly represent a relation; the con-
structed ARG might then include facts p(a) that are not actually entailed by
C. In line 8, the algorithm therefore has to verify that discovered derivations
of false are genuine. This is done by collecting the clauses that were used to
derive the nodes ¥ in the ARG and constructing a counterexample tree. If the
counterexample turns out to be spurious, further predicates are added to the
sets IT,, for instance using tree interpolation [31], in lines 11-13.

4 Guiding CHC Solvers Using MUSes

In this section, we begin by defining the notion of Minimal Unsatisfiable Sets
(MUSes), then we detail the process of collecting three types of training labels
using the MUSes. Following that, we explain the various strategies of employing
the predicted probability of a CHC being in MUSes to guide Algorithm 1.
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4.1 Minimal Unsatisfiable Sets

Throughout the section, assume that C is an unsatisfiable set of CHCs.

Definition 6 (Minimal Unsatisfiable Set). A subset U C C is a Minimal
Unsatisfiable Set (MUS) if U is unsatisfiable and for all CHCs h € U it is the
case that U\{h} is satisfiable.

Intuitively, MUSes of a set of CHCs encoding a program correspond to minimal
counterexamples (i.e., a subset of program statements) witnessing the incor-
rectness of the program. MUSes are therefore good candidates for guiding CHC
solvers towards the critical clauses, and we aim at predicting MUSes using GNNs.

The number of MUSes can, however, be exponential in the number of CHCs
in C. We therefore consider the union, intersection, and a particular single MUS
for C. Denoting the set of all MUSes of C by MUS(C), those are:

ll\l/IHIIJOSI:as U MUS mtersectlon _ m MUS
Ci/l[%gézs = argmax numAtom(U),
UeMUS(C)

where numAtom(U) is the total number of atoms of the CHCs in U, and Ci/iffjgéecs
is some MUS that maximizes the total number of atoms. The three clause sets
can be computed using the OptiRica extension of the Eldarica Horn solver [32].

Intuitively, CyRion  includes all information about possible MUSes and
encourages the algorithm to go through all possible error-prone areas. In con-
trast, Cﬁ%egzesmon only takes the intersection of all MUSes which can guide the
algorithm to only focus on the most suspicious areas. Cl\}[%gézs is one of MUSes
and corresponds to a long path in the ARG, given that a high number of atoms
is associated with a large number of nodes. We believe a long path contains
intricate information, which is challenging for human to parse, but easier for a
deep-learning-based model to find.

We form three types of Boolean clause labelings by using CyRien | Ciptersection,

single . : union 3
and Cyijsess respectively. For instance, for CydLs, we obtain the labels

lunion (C) — 1 Zf h e Cll\l/ln[iJOSI::s
0 if heC\Cifids

4.2 MUS-Based Guidance for CHC Solvers

Eldarica Heuristics The implementations of CEGAR and SymEx in the Horn
solver Eldarica [28] by default use fixed, hand-written selection heuristics in line 5
of Algorithm 1. Such heuristics are defined by a ranking function r : Q — 7Z that
maps every element in the queue to an integer; in line 5, the element of @ is
picked that minimizes r. The standard implementation of r used for CEGAR is
defined by

EldCEGARRank(q) = numPredicate(q) + birthTime(q) + falseClause(q) ,
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where numPredicate((h,v)) = }_(, pes |R| is the total number of predicates
occurring in the considered nodes of the ARG; birthTime(q) is the iteration (as
an integer) in which ¢ was added to @;! and falseClause((h,v)) is 0 if the head of
h is not false, and some big integer otherwise. The rationale behind the ranking
function is that nodes with few predicates tend to subsume nodes with many
predicates, every clause should be picked eventually, and clauses with head false
will trigger either termination of the algorithm or abstraction refinement.

In SymEx, for a node (p, R), we define numConstraint(R) to be the num-
ber of conjuncts of R. For instance, for R = (x > 1 Ay < 0) we would get
numConstraint(R) = 2. The default Eldarica ranking function for SymEx is
defined by

EldSymEzRank((h,v)) = Z numConstraint(R) .
(p,R)ED

Similar to numPredicate, the intuition behind EldSymFExRank is that nodes with
larger formulas (more restrictions) tend to be subsumed by nodes with smaller
formulas (fewer restrictions).

MUS-Guided Heuristics We now introduce several new ranking functions
defined with the help of MUSes. For this, suppose that C is the set of CHCs
that a Horn solver is applied on. Under the assumption that C is unsatisfiable,
we obtain three labeling functions Junion, jintersection single that are able to point
out clauses to be prioritized in Algorithm 1.

In practice, of course, the status of C will initially be unknown. We therefore
use three GNNs to predict labels [Unien(p), [intersection )y single(p) " regpectively,
given just the set C and some clause h € C as input. We interpret the prediction
of a GNN as a probability P(h) of a clause h to be in the union, intersection,
or the single MUS set, and use those probabilities to define ranking functions.
Table1 lists several candidate ranking functions in terms of this membership
probability P, where P stands for one of Purion  psingle oy pintersection

We consider two ways to convert probabilities to integers that can be used
in the ranking function. In rankp(q), the elements ¢ = (h,v) of the queue Q are
first sorted in descending order of P(h); the number rankp(q) is the position
of ¢ in this sequence. This means that rankp(q) ranges from 0 to |Q| — 1, and
elements with large probability P(h) will be assigned small rank.

In normp(q), we assume that minp = min{P(h) | (h,9) € Q} and
maxp = max{P(h) | (h,7) € Q} denote the minimum and maximum probabil-
ity, respectively, among elements of (). The normalized value normp(q) € [0, 1]
is defined by
P(h) — minp

normp((h,v)) = maxp — minp

In the ranking functions, we multiple normp(q) with a negative coefficient coef
and round the result to the nearest integer.

1 Strictly speaking, this information cannot be computed from g, it is in practice stored
as an additional field of the queue elements.
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Table 1. Ranking function for queue elements ¢ € @ in Algorithm 1, where P €
{]punlon7 F)slngle7 Pmtersectlon}.

Algorithm | Name Ranking function
CEGAR Fixed EldCEGARRank(q)
Random RandomRank
Score coef - normp(q)
Rank rankp(q)
R-Plus rank p(q) + EldCEGARRank(q)
S-Plus coef - normp(q) + EIdCEGARRank(q)

R-Minus rank p(q) — EIdCEGARRank(q)
S-Minus coef- normp(q) — EIdCEGARRank(q)

SymEx Fixed EldSymFEzRank(q)
Random RandomRank
Score coef - normp(q)
Rank rank p(q)
R-Plus rank p(q) + EldSymExRank(q) + birthTime(q)
S-Plus coef - normp(q) + EldSymEzRank(q) + birthTime(q)

R-Minus rank p(q) — EldSymExRank(q) — birthTime(q)
S-Minus coef - normp(q) — EldSymEzRank(q) — birthTime(q)
R-Minus, 80% probability

Random, 20% probability

Two-queue {

The RandomRank function ensures that each CHC has an equal opportunity
to be selected in each iteration. The Two-queue case denotes a setup with two
queues, ()1 and @2, each used with a certain probability in line 5 of Algorithm 1.
We list just one such combination, which alternates between queues with the R-
Minus and Random functions: there’s an 80% chance we use the R-Minus queue
and a 20% chance we use the Random queue.

5 Design of Model

As shown in Fig. 1, within the CHC-R-HyGNN framework, we first encode a set
of CHCs into a graph format, and then we build a GNN model consisting of an
encoder, GNN layers, and a decoder.

5.1 Encode CHCs to Graph Representation

We apply the two (hyper-)graph representations of CHCs defined in [1]. We will
briefly describe their main features here.

The first graph representation is called a constraint graph (CG). This graph
encapsulates syntactic information by using nodes to represent each symbol and
connecting them with binary edges. Each CHC and each predicate symbol is
represented by a unique node. Terms and formulas are represented using their
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abstract syntax trees (AST). CHC nodes are connected to the constituent atoms
and constraints by binary edges. Within one CHC, common sub-expressions are
represented by the same nodes. Different hyper-graph node and edges types are
used to distinguish the various encoded operators (see Sect.2.3).

The second graph representation is the control- and data-flow hypergraph
(CDHG). This graph is designed to capture both control- and data-flow within
CHCs using hyperedges, and therefore captures the semantics of CHCs more
directly than GCs. Similar to the CG, in the CDHG, each CHC is represented
by a unique node, and the atoms are rendered in the same way as in CG. Unlike
the CG, the CDHG uses control-flow hyperedges (CFHESs) to describe the control-
flow from the body to the head in each CHC, guarded by the constraint of the
CHC. Furthermore, the CDHG uses data-flow hyperedges (DFHESs) to represent
data-flow from the terms in the body to the terms in the head. These data-flows
are also guarded by the constraint.

5.2 Model Structure

The R-HyGNN model consists of three sub-components: (i) encoder, (ii) R-
HyGNN [1] (a GNN), and (iii) decoder:

(i) Ho = encoder(V, Ay, Ly), (ii) H¢ = R-HyGNN(Ho, E, Lg),
(iii) £ = decoder(Hy) .

The encoder in (i) first maps each node in V' to an integer according to the
node’s type determined by Ay and Ly . Then, it passes the encoded integers
to a single-layer neural network (embedding layer) to compute initial node rep-
resentations Ho. The R-HyGNN in (ii) is a GNN with its node representation
updating rule defined in (3). It takes the initial node representations (Hy), edges
(E), and edge types (Lg) as input and outputs the updated node represen-
tations H;. The decoder in (iii) first identifies the node that denote the CHC
instead of the variables, atoms, or other elements in the CHC, then we collect
the representations of these CHC nodes HEHC® from all node representations H,.
Finally, we pass HEHCS to a set of fully connected neural networks to compute
the probability of each CHC being in the MUSes, and L is a set of probabilities.

The parameters of neural networks in (i), (ii), and (iii) are optimized together
by minimizing the binary cross-entropy loss [33] between £ and the true labels
L, ie.,

N
1 A R
loss = N i:E 1 Lilog(L;) + (1 — L;)log(1 — L;). (5)

6 Evaluation

We first describe how the benchmarks are split for training and evaluation, then
list some important parameters. Finally, we show and explain the experimental
results. This work can be reproduced by following the instructions in [34].
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Table 2. Distribution of the number of problems for both training and evaluation.
T/O, N/A, and Evail. denote timeout, not available, and evaluation, respectively.

Linear LIA problems Non-linear LIA problems

8705 8425

Benchmarks for training Holdout set | Benchmarks for training Holdout set
7834 (90%) 871 (10%) 7579 (90%) 846 (10%)
UNSAT SAT | T/O | Eval. | N/A | UNSAT SAT | T/O | Eval. | N/A
1585 4004 | 2245 | 383 | 488 | 3315 4010 | 254 | 488 | 358
Train | Valid | N/A Train | Valid | N/A

782 |87 716 1617 | 180 | 1518

6.1 Benchmark

The training and evaluation data are specified in Table 2, and available in [20].
There are 8705 linear and 8425 non-linear LIA problems, taken from CHC-
COMP 2021 [19]. We first uniformly reserved 10% of the benchmarks as hold-
out set for the final evaluation. We ran the CEGAR in Eldarica using a 3-hour
timeout to solve the remaining 90% of benchmarks, leading to three groups of
benchmarks: SAT, UNSAT, and timeout. For UNSAT problems, we also com-
puted the MUS sets Cypion | Cintersection o CSM8le Some problems in UNSAT
were eliminated in this process (N/A, for both training and evaluation) because
the problems were trivial (already solved by the Eldarica preprocessor), the pro-
cess of extracting MUSes timed out (3h), or a timeout occurred when encoding
CHCs as graphs. The remaining problems are divided into training (90%) and
validation (10%) datasets.

6.2 Parameters

We select the hyper-parameters for the GNN empirically, and according to the
experimental results from [1]. We set the vector size of the initial node represen-
tation and the number of neurons in all intermediate neural network layers to 32;
we also set the number of message-passing steps to 8 (i.e., applying (3) 8 times).
The constant coef in Tablel is —1000. Other parameters and the instructions
to reproduce these results can be found in [20].

6.3 Experimental Results

In our experiment, we measure the number of solved problems and the aver-
age solving time for the holdout evaluation set. This included 383 and 488 prob-
lems in the linear and non-linear LIA datasets, respectively. The timeout for eval-
uating each problem is 1200s. The additional overhead for reading and applying
the GNN predicted results in each iteration is included in the solving time. The
numerical results are shown in Tables 3 and 4. We also visualize some numerical
results by scatter plots in Fig. 2.
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Table 3. Overview of the best ranking function and improvement in number of solved
problems compared to the Eldarica. A ranking function marked with * (e.g., S-Plus*)
denotes that there are multiple ranking functions with the same performance.

Benchmark MUS Best ranking function (improvement in %)
Algorithm data set,
(best count) Number of Solved Problems Average Time
Total SAT UNSAT All Common | SAT UNSAT
Linear Union R-Plus R-Plus R-Minus | R-Plus S-Plus S-Minus | Rank
CEGAR (0) (1.4%) (2.4%) (1.0%) (1.3%) (19.1%) (46.5%) (31.1%)
Single Rank R-Plus Rank R-Plus S-Plus R-Minus | Rank
(3) (3.6%) (4.0%) (8.2%) (1.9%) (26.6%) (57.9%) | (36.3%)
Intersection R-Plus S-Plus R-Plus R-Plus S-Plus R-Minus | S-Plus
(4) (4.1%) (0.8%) (9.3%) (3.1%) (27.6%) | (45.0%) (0.0%)
Linear Union Two-Q S-Plus* Random | Two-Q R-Minus | R-Minus | S-Plus
SymEx (4) (1.0%) (0.0%) (2.0%) (0.9%) (12.7%) (30.2%) | (26.5%)
Single S-Minus* | S-Plus* Random |Random |S-Plus Random | S-Plus
(3) (0.5%) (0.0%) (2.0%) (0.8%) (12.9%) | (28.4%) (17.6%)
Intersection S-Plus* | S-Plus* S-Plus* | S-Plus Score Random | R-Plus
(5) (1.0%) (0.0%) (2.0%) (1.3%) (9-5%) (28.4%) (35.8%)
Non-Linear Union S-Plus S-Plus S-Plus* | S-Plus R-Minus | Rank S-Plus
CEGAR (7) (0.5%) (0.8%) (0.0%) B (20.8%) |(53.5%) |(19.4%)
Single R-Plus R-Plus R-Plus* | R-Plus S-Plus R-Minus | R-Minus
(1) (0.2%) (0.4%) (0.0%) (6.6%) (18.4%) (52.8%) (14.2%)
Intersection R-Plus* S-Plus S-Plus* | R-Plus R-Plus Rank S-Plus
(1) (0.0%) (0.5%) (0.0%) (5.9%) (20.3%) (45.8%) (16.8%)
Non-Linear Union Two-Q S-Minus* | Random |Two-Q R-Minus | Score R-Plus
SymEx (6) (6.1%) (1.6%) (12.3%) (13.3%) |(7.3%) (5.1%) (19.9%)
Single Two-Q Score Two-Q Two-Q Rank R-Minus | Two-Q
(3) (6.1%) (1.6%) (12.9%) |(12.4%) (—2.2%) | (0.2%) (11.2%)
Intersection Two-Q S-Plus Two-Q Two-Q S-Minus | Two-Q S-Plus
(3) (6.1%) (1.6%) (12.9%) | (12.7%) (0.6%) (1.7%) (5.4%)

In Tables 3 and 4, under the Number of Solved Problems column, the Total,
and SAT, UNSAT columns denote the number of totals solved, solved SAT, and
solved UNSAT problems, respectively. Under the Average Time column, the All
column denotes the average solving time for all problems, including those that
timed out; the Common column means the average solving time for problems
that were commonly solved using one of the ranking functions in Table 1, and the
default Eldarica ranking function; the SAT and UNSAT columns are the average
solving times for SAT and UNSAT problems, respectively. In certain cells, the
percentage in brackets represents the improvement compared to the correspond-
ing default ranking function. The bold text highlights the best performance in
a Benchmark Algorithm block for each measurement.

Table 3 displays the best ranking function and its improvement over the
default Eldarica ranking function in different measurements for various com-
binations of benchmarks (linear and non-linear LIA), algorithms (CEGAR and
SymEx), and MUS datasets (union, single, and intersection of MUSes). In the
MUS dataset column, the numbers in brackets represent the count of bold text
cells in the row, indicating the number of best performances achieved by that
type of MUS dataset. For instance, in the last row (i.e., the Intersection row of
the Non-Linear SymEx block), the number in the bracket is counted from the
bold text highlighted cells in columns Total, SAT, and UNSAT under the Num-
ber of Solved Problems. This suggests that using the intersection of the MUSes
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Table 4. Evaluation on holdout problems using union dataset. The time unit is second.

Number of Solved Problems | Average Time(improvement %)
(improvement %)
Benchmark Ranking Total SAT UNSAT All Common | SAT UNSAT
Algorithm Function
Linear Default 222 125 97 519.38 25.77 38.97 8.77
CEGAR Random | 221 124 97 52358 2749 |37.05 15.85
(—0.5%) | (—0.8%) | (0.0%) (—0.8%) | (—29.5%) | (4.9%) (—80.7%)
R-Plus 225 128 97 512.41 |21.65 42.89 11.99
(1.4%) | (2.4%) |(0.0%) (1.3%) | (16.0%) | (—10.1%) |(—36.7%)
R-Minus 220 122 98 526.08 18.02 30.93 21.60
(=0.9%) | (—2.4%) | (1.0%) (—1.3%) | (—24.4%) |(20.6%) | (—146.3%)
S-Plus 222 125 97 517.43 20.92 34.13 7.32
(0.0%) | (0.0%) |(0.0%) (04%) | (19.1%) |(12.4%) | (16.5%)
S-Minus 219 122 97 522.97 12.56 20.86 9.81
(-1.4%) | (—2.4%) |(0.0%) (=0.7%) | (2.4%) (46.5%) | (—11.9%)
Portfolio 229 130 99 503.16 18.28 45.67 19.94
(3.2%) (4.0%) (2.1%) (3.1%) (29.1%) (—17.2%) | (—127.4%)
Linear Default 200 101 99 590.68 33.16 55.42 10.44
SymEx Random | 201 100 101 586.12 | 30.08 39.69 20.95
(05%) | (—1.0%) | (2.0%) (0.8%) | (~8.5%) | (28.4%) | (~100.7%)
R-Plus 192 101 91 617.60 38.59 52.87 21.99
(—4.0%) | (0.0%) |(—8.1%) (—4.6%) | (—10.9%) | (4.6%) (—110.6%)
R-Minus 200 100 100 586.24 24.67 38.69 10.60
(0.0%) (=1.0%) | (1.0%) (0.8%) (12.7%) | (30.2%) |(—1.5%)
S-Plus 198 101 97 595.02 30.22 50.97 7.67
(=1.0%) | (0.0%) |(—2.0%) (—=0.7%) | (11.6%) | (8.0%) (26.5%)
S-Minus 201 101 100 586.35 30.64 50.57 10.65
(0.5%) | (0.0%) | (1.0%) 0.7%) | (7.8%) (8.8%) (—2.0%)
Two-queue | 202 101 101 585.58 |35.11 49.94 20.14
(1.0%) | (0.0%) |(2.0%) (0.9%) | (=5.9%) | (9.9%) (—92.9%)
Portfolio 206 101 105 569.1 25.79 44.58 10.16
(3%) (0.0%) | (6.1%) (3.7%) | (222%) | (19.6%) | (2.6%)
Non Linear Default 432 250 182 131.12 42.05 43.34 40.28
CEGAR Random 425 243 182 143.42 34.27 34.84 38.75
(—-1.6%) | (—2.8%) |(0.0%) (—9.4%) | (—11.1%) | (19.6%) (3.8%)
R-Plus 432 250 182 122.29 31.74 28.59 37.82
(0.0%) (0.0%) (0.0%) (6.7%) (17.8%) (34.0%) (6.1%)
R-Minus 417 240 177 154.07 26.20 21.46 32.51
(—=3.5%) | (—4.0%) |(—2.7%) (—17.5%)| (20.8%) | (50.5%) |(19.3%)
S-Plus 434 252 82 121.75 |34.64 35.97 39.10
(0.5%) |(0.8%) |(0.0%) (7.1%) | (13.1%) | (17.0%) | (2.9%)
S-Minus 421 242 179 149.02 31.76 26.33 38.95
(—2.5%) | (=3.2%) |(—1.6%) (—13.7%)| (—2.0%) | (392%) | (3.3%)
Portfolio 435 253 182 113.49 28.24 30.57 31.75
(0.7%) | (1.2%) | (0.0%) (13.4%) | (291%) | (295%) | (21.2%)
Non Linear Default 342 187 155 343.82 28.39 29.05 27.59
SymEx Random | 362 188 174 301.90 |32.67 36.24  [41.83
(5.8%) | (0.5%) |(12.3%) | (12.2%) |(—15.1%) | (—24.8%) (—51.6%)
R-Plus 339 190 149 357.18 27.88 47.71 22.10
(=0.9%) | (1.6%) | (—3.9%) (—=3.9%) | (0.3%) (—64.2%) | (19.9%)
R-Minus 361 189 172 299.86 26.35 37.68 27.98
(5.6%) (1.1%) (11.0%) (12.8%) |(7.3%) (—29.7%) | (—1.4%)
S-Plus 340 189 151 352.84 29.04 41.41 24.54
(—0.6%) | (1.1%) (—2.6%) (—2.6%) |(—0.3%) | (—42.5%) |(11.1%)
S-Minus 362 190 172 303.65 28.62 44.11 37.95
(5.8%) (1.6%) | (11.0%) (11.7%) | (—=0.4%) | (—51.8%) | (—37.5%)
Two-queue | 363 189 174 297.93 |30.15 41.14 32.51
(6.1%) |(1.1%) |(12.3%) | (13.3%) (—6.2%) |(—41.6%) |(—17.8%)
Portfolio 366 191 175 288.85 22.29 42.42 26.75
(7.0%) (2.1%) (12.9%) (16.0%) | (21.4%) (—46.0%) | (3.0%)
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dataset achieves the best performance when the evaluation set is non-linear and
the algorithm is SymEx. Across the entire table, there are 17, 10, and 13 bold text
counts for the union, single, and intersection MUS datasets, respectively. This
indicates that the union is the most effective MUS dataset for better performance
across different benchmarks and algorithms. Consequently, we provide further
numerical details for the union MUS dataset in Table4. Evaluation results for
both the single and intersection MUS datasets can be found in [20].

Table 4 illustrates the evaluation results using MUS-guided ranking functions
(see Table 1), compared to the default and random ranking functions. In terms of
the total number of solved problems, the improvement for the Linear dataset is at
most 1.4%, achieved by the CEGAR algorithm with the R-Plus ranking function.
Meanwhile, for the Non-linear dataset, the improvement is 6.1%, achieved by
the SymEx algorithm with the two-queue ranking function. This is consistent
with the average solving time for all benchmarks. In each Benchmark Algorithm
block, we also show the results obtained by a virtual portfolio that selects the
best ranking function for each benchmark.

The biggest improvement in Average Time for SAT and UNSAT problems
are 50.5% and 26.5%, achieved by the CEGAR with R-Minus and the SymEx with
S-Plus ranking function, respectively. When combined with the corresponding
numbers of total solved problems (i.e., —3.5% and —1.0%), it suggests that these
ranking functions either solve the problems quickly or not at all. The Average
Times in the Common column often differ significantly from the times in the All
column. This suggests that the number of newly solved problems has a greater
impact on the improvement in the average solving time for all problems than
the commonly solved problems.

Figure 2 shows the solving time scatter plots for the problems from the best
configurations in each Benchmark Algorithm block in Table 4. Notably, a major-
ity of the dots lie below the diagonal lines in each scatter plot, indicating the
solving time is improved by the MUS-guided ranking function for more than
half of the problems. This is consistent with the numerical results. The plots
also show that the MUS-guided ranking functions achieve speedups in CEGAR
in particular for long-running problems that are SAT, while MUS-guidance in
SymEx makes it possible to solve a significant number of UNSAT problems on
which the default configuration times out.

In summary, for both algorithms in different datasets, there is always at
least one of the MUS-guided ranking functions that achieves the best result in
terms of all aspects of measurements. Using the predicted probabilities alone
(i.e., using the Rank and Score ranking function) performs weaker than other
MUS-guided ranking functions that combine the predicted probability and the
default heuristics. Currently, the MUS-guided ranking functions in Table1 are
designed by simply varying the relation symbols “+” and “—” between differ-
ent elements (e.g., ranking functions S-Plus and S-Minus for both CEGAR and
SymEx) or by setting the restart point randomly (i.e., ranking function Two-
queue in SymEx). We believe MUSHyperNet has more potential if the ranking
functions are designed carefully or learned from some good tasks.
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Fig. 2. All benchmark average solving time scatter plots for best ranking functions in
different dataset and algorithms. “above/under” means the number of dots above and
under the diagonal line.

7 Related Work

Machine learning techniques have been adapted in various ways to assist in for-
mal verification. For example, the study in [35] employs Support Vector Machines
(SVM) [36] and Gaussian processes [37] to select heuristics for theorem proving.
Similarly, [38] introduces the use of a Recurrent Neural Network Based Language
Model (RNNLM) to derive finite-state automaton-based specifications from exe-
cution traces. In the domain of selecting algorithms for program verification,
[39] apply the Transformer architecture [40], while [41] uses kernel-based meth-
ods [42]. With the thriving of deep learning techniques, an increasing number of
works are utilizing GNNs to learn the features from programs and logic formu-
lae. This trend is attributed to the inherent structure of these languages, which
can be naturally represented as graphs and subsequently learned by GNNs. For
instance, studies like [14-16,43], and [44] use GNNs [24,45,46] to learn features
from graph-represented logic formulas and programs, aiding in tasks such as
theorem proving, SAT solving, and loop invariant reasoning.

One closed idea is NeuroSAT [16,17], which trains a GNN to predict the
probability of variables appearing in unsat cores. This prediction can guide the
variable branching decisions for Conflict-Driven Clause Learning (CDCL) [47]-
based SAT solvers. In a similar vein, our study trains a GNN to predict the
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probability of a CHC appearing in MUSes. This aids in determining the process-
ing sequence of CHCs in Algorithm 1 used for solving a set of CHCs.

8 Conclusion and Future Works

In this study, we train a GNN model to predict the probability of each CHC in
a set of CHCs being in the MUSes. We then utilize these predicted probabilities
to guide the abstract symbolic model-checking algorithm in selecting a CHC
during each iteration. Extensive experiments demonstrate improvements in both
the number of solved problems and average solving time when using the MUS-
guided ranking functions, compared to the default ranking function. This was
observed in two instances of the abstract symbolic model checking algorithm:
CEGAR and SymEx. We believe that this approach can be extended to other
algorithms, as many could benefit from understanding more about the MUSes
of a set of CHCs.

There are several ways to further enhance the performance of MUSHyperNet.
One of our future work is to integrate the work of manually designing the ranking
functions in Table1 to the learning process. Regarding the GNN model, we
believe that incorporating an attention mechanism could bolster its performance,
subsequently refining the quality of the predicted probabilities. Another avenue
to explore involves integrating the GNN with the solver in a more interactive
manner. Instead of predicting something at once and then using them in each
iteration, we could query the GNN model to predict something in real-time based
on the current context during each iteration.
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Abstract. This paper proposes a Graph Neural Network-guided algo-
rithm for solving word equations, based on the well-known Nielsen trans-
formation for splitting equations. The algorithm iteratively rewrites the
first terms of each side of an equation, giving rise to a tree-like search
space. The choice of path at each split point of the tree significantly
impacts solving time, motivating the use of Graph Neural Networks
(GNNs) for efficient split decision-making. Split decisions are encoded as
multi-classification tasks, and five graph representations of word equa-
tions are introduced to encode their structural information for GNNs.
The algorithm is implemented as a solver named DragonLi. Experi-
ments are conducted on artificial and real-world benchmarks. The algo-
rithm performs particularly well on satisfiable problems. For single word
equations, DragonlLi can solve significantly more problems than well-
established string solvers. For the conjunction of multiple word equa-
tions, DragonLi is competitive with state-of-the-art string solvers.

Keywords: Word equation - Graph neural network - String theory

1 Introduction

Over the past few years, reasoning within specific theories, including arithmetic,
arrays, or algebraic data structures, has become one the main challenges in auto-
mated reasoning. To address the needs of modern applications, new techniques
have been developed, giving rise to SMT (Satisfiability Modulo Theories) solvers.
SMT solvers implement efficient decision procedures and reasoning methods for
a wide range of theories, and are used in applications such as verification.
Among the theories supported by SMT solvers, the theory of strings has in
particular received attention in the last years. Strings represent one of the most
important data-types in programming, and string constraints are therefore rele-
vant in various domains, from text processing to database management systems
and web applications. One of the simplest kind of constraints supported by the
SMT-LIB theory of strings [12] are word equations, i.e., equations in a free semi-
group [30]. Makanin’s work [36] demonstrated the decidability of the word equa-
tion problem, which was later confirmed to be in PSPACE [44]. However, even

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
S. Akshay et al. (Eds.): ATVA 2024, LNCS 15054, pp. 279-301, 2025.
https://doi.org/10.1007/978-3-031-78709-6_14
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the leading SMT solvers with support for string constraints (including cvc5 [10],
Z3 [39], Norn [5], TRAU [6], Ostrich [16], Woorpje [19], and Z3-Noodler [17]) tend
to be incomplete for proving the unsatisfiability of word equations, illustrating
the hardness of the theory.

Solving a word equation is to check for the existence of string values for
variables that make equal both sides of the equation. For example, consider the
equation Xab = YaZ, where X,Y, and Z are variables ranging over strings, and
a and b are letters. This equation is satisfiable and has multiple solutions. For
example, assigning a to both X and Y and b to Z results in aab = aab.

This paper presents an algorithm that makes use of Graph Neural Networks
(GNN) [13] in order to solve word equations. It is an extension of the method
proposed in [4] and implemented in Norn [5], referred to as the split algorithm.
The split algorithm is, in turn, based on the well-known Nielsen transforma-
tion [40]. It builds a proof tree by iteratively applying a set of inference (split)
rules on a word equation.

One critical aspect of the algorithm lies in selecting the next branch to
be explored while constructing the proof tree, which significantly influences
the solving time. To address this, we present a heuristic that leverages deep
learning to determine the exploration order of branches. GNNs [13] represent
one of the paradigms in neural network research, tailored for non-Euclidean,
graph-structured data. This makes them suited for scenarios where data points
are interconnected, such as social networks [22], molecular structures [23], pro-
grams [9,38], and logical formulae [18,29,41,50]. Our work represents, to the best
of our knowledge, the first use of deep learning in the context of word equations.

Figure 1 illustrates the workflow of our approach. During the training stage,
we initially employ the split algorithm (without GNN guidance) to solve word
equation problems drawn from a training dataset. For each satisfiable (SAT)
problem, we generate a corresponding proof tree. Within this tree, each branch
(pair of a node and a direct child) is evaluated to determine whether it leads
to a solution, as well as its distance to the corresponding leaf. Based on this
information, we assign labels to each branch to indicate whether it is a favorable
choice for reaching a solution. Subsequently, we model each branching point
comprising the node and its child nodes as a graph. These graph representations,
along with their associated labels, are then used to train the GNN.

In the prediction stage, word equations from an evaluation dataset are pro-
cessed using the split algorithm, now guided by GNN. At each branching point,
the current branch is first transformed into a graph representation, which is in
turn fed to the trained GNN model. The GNN, using its learned insights, advises
on which branch should be prioritized and explored first.

We implemented this algorithm in the DragonLi tool. Experiments were con-
ducted using four word equation benchmarks: three of them are artificially gen-
erated and inspired by Woorpje [19]; a fourth one is extracted from SMT-LIB
benchmarks [1] and encodes real-world problems. Results show that for SAT
problems, the pure split algorithm without GNNs is already competitive with
some leading string solvers (Z3 [39], cvch [10], Ostrich [16], Woorpje [19], Z3-
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Fig. 1. The workflow diagram for the training and prediction stage

Noodler [17]), while it performs less well on UNSAT problems. We conjecture
that this is due to the (relatively straightforward) depth-first search performed
by our implementation of the split algorithm, which is a good strategy for finding
solutions, whereas other solvers devote more time (e.g., using length reasoning)
to show that formulas are unsatisfiable. Enabling GNN guidance in DragonLi
uniformly improves performance on SAT problems, allowing it to outperform all
other solvers in one specific benchmark. Specifically, in Benchmark 2, the GNN-
guided version of DragonLi solves 115% more SAT problems than its non-GNN-
guided counterpart and 43.0% more than the next best string solver, Woorpje.
In summary, the contributions of this paper are as follows:

— We define a proof system based on the split algorithm for solving word equa-
tions, tailored to combining symbolic reasoning with GNN-based guidance.

— Based on the proof system, we introduce an algorithm for integrating GNN-
based guidance with the proof system.

— To train a GNN on the data obtained from solving word equations, we present
five possible graph representations of word equations.

— We present an extensive experimental evaluation on four word equation
benchmarks, comparing, in particular, the different graph encodings and dif-
ferent backtracking strategies of the algorithm.

2 Preliminaries

We start by defining the syntax of word equations, as well as the notion of
satisfiability. Then, we explain the fundamental mechanism of Graph Neural
Networks (GNNs), along with a description of the specific GNN model we have
employed in our experiments.

Word Equations. We assume a finite non-empty alphabet X~ and write X* for
the set of all strings (or words) over X. We work with a set I" of string variables,
ranging over words in X*  and denote the empty string by e. The symbol -
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denotes the concatenation of two strings; in our examples, we often write uv as
shorthand for « - v. The syntax of word equations is defined as follows:

Formulae ¢ ::= true | e A ¢ Words w =€ | t-w

Equations e 1= w =w Terms t := X | ¢
where X € I' ranges over variables and ¢ € X over letters.

Definition 1 (Satisfiability of word equations). A formula ¢ is satisfiable
if there exists a substitution m : I' — X* such that, when each variable X € I’
in ¢ is replaced by 7w(X), all equations in ¢ are satisfied.

Graph Neural Networks. A Graph Neural Network (GNN) [13] uses Multi-
Layer Perceptrons (MLPs) to extract features from a given graph. MLPs, also
known as multi-layer neural networks [25], transform an input space to make
different classes of data linearly separable, and this way learn representations
of data with multiple levels of abstraction. Each layer of an MLP consists of
neurons that apply a nonlinear transformation to the inputs received from the
previous layer. This allows MLPs to learn increasingly complex patterns as data
moves from the input layer to the output layer.

Message passing-based GNNs (MP-GNNs) [24] are designed to learn features
of graph nodes (and potentially the entire graph) by iteratively aggregating
and transforming feature information from the neighborhood of a node. For
instance, if we represent variables in a word equation by nodes in a graph,
then node features could represent symbol type (i.e., being a variable), possible
assignments, or the position in the word equation.

Consider a graph G = (V, E), with V as the set of nodes and E CV x V as
the set of edges. Each node v € V' has an initial representation z, € R™ and a
set of neighbors N, C V. In an MP-GNN comprising T' message-passing steps,
node representations are iteratively updated. At each step t, the representation
of node v, denoted as h!, is updated using the equation:

hf} = Ut(Pt({hZ_l ‘ u e Nv})vhtu_l)a (1)

where h! € R™ is the updated representation of node v after ¢ iterations, starting
from the initial representation hg = x,. The node representation of u in the
previous iteration ¢ — 1 is k{1, and node u is a neighbor of node v. In this
context, p; : (R")'N vl — R™ is an aggregation function with trainable parameters
(e.g., an MLP followed by sum, mean, min, or max) that aggregates the node
representations of v’s neighboring nodes at the ¢-th iteration. Along with this, 7, :
(R™)? — R" is an update function with trainable parameters (e.g., an MLP) that
takes the aggregated node representation from p; and the node representation of
v in the previous iteration as input, and outputs the updated node representation
of v at the t-th iteration.

MP-GNNs operate under the assumption that node features can capture
structural information from long-distance neighbors by aggregating and updat-
ing features of neighboring nodes. After T message-passing steps, an MP-GNN
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yields an updated node representation (feature) that includes information from
neighbors within a distance of T', applicable to various downstream tasks like
node or graph classification.

In this study, we choose Graph Convolutional Networks (GCNs) [31] to guide
our algorithm. In GCNs, the node representation h! of v at step t € {1,...,T}
where T € N is computed by

h! = ReLU(MLP"(mean{h! ! | u € N, U {v}})), (2)
where each MLP? is a fully connected neural network, ReLU (Rectified Linear

Unit) [8] is the non-linear function f(z) = max(0, ), and h? = z,,.

3 Search Procedure and Split Algorithm

In this section, we define our proof system for word equations, the notion of a
proof tree, and show soundness and completeness. We then introduce an algo-
rithm to solve a conjunction of word equations.

3.1 Split Rules

We introduce four types of proof rules in Fig. 2, each corresponding to a specific
situation. The proof rules are inspired by [4], but streamlined and formulated
differently. Each proof rule is of the form:

P
Name

[cond,,)
Cn

[cond;]
C1

Here, Name is the name of the rule, P is the premise, and C;s are the conclu-
sions. Each cond; is a substitution that is applied implicitly to the corresponding
conclusion (Y, describing the case handled by that particular branch. In our case,
P is a conjunction of word equations and each Cj is either a conjunction of word
equations or a final state, SAT or UNSAT.

To introduce our proof rules, we use distinct letters a,b € X and variables
X,Y € I', while u and v denote sequences of letters and variables.

Rules Ry, Ro, Rs, and R4 (Fig.2a) define how to simplify word equations,
and how to handle equations in which one side is empty. In Rj3, note that the
substitution X +— e is applied to the conclusion ¢. Rules R5 and Rg (Fig. 2b) refer
to cases in which each word starts with a letter. The rules simplify the current
equation, either by removing the first letter, if it is identical on both sides (R5),
or by concluding that the equation is UNSAT (Rg). Rule R7 (Fig.2c) manages
cases where one side begins with a letter and the other one with a variable. The
rule introduces two branches, since the variable must either denote the empty
string e, or its value must start with the same letter as the right-hand side. Rule
Rg (Fig.2d) handles the case in which both sides of an equation start with a
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variable, implying that either both variables have the same value or the value of
one is included in the value of the other.

We implicitly assume symmetric versions of the rules Rs, Ry, and Ry, swap-
ping left-hand side and right-hand side of the equation that is rewritten. For
instance, the symmetric rule for R3 would have premise € = X A ¢.

e=ecNo Rs X=¢eng a-u=€eANo
¢ [X 1= €] R —gRsaT

¢

with X € I' and a € X.

(a) Simplification rules

R a-u=a-vAo R a-u=b-vA¢
ST u=uvAe ¢ UNSAT
with a, b two different letters from X

(b) Letter-letter rules

X-u=a-vA¢

Fz X ‘ X a X

u=a-vAo X u=vAe
with X’ a fresh element of I

(c) Variable-letter rules

X-u=Y -vA¢
X =Y Y]
Y u=vA¢

Rs

(X —Y]
u=vA¢

[Y = X X]
u=X"-vA¢

with X', Y’ fresh elements of I.
(d) Variable-variable rule

Fig. 2. Rules of the proof system for word equations

Although our proof system is not complete for proving the unsatisfiability of
word equations, we can observe that the proof rules are sound and locally com-
plete. A proof rule is said to be sound if the satisfiability of the premise implies
the satisfiability of one of the conclusions. It is said to be locally complete if the
satisfiability of one of the conclusions implies the satisfiability of the premise.

Lemma 1. The proof rules in Fig. 2 are sound and locally complete.

3.2 Proof Trees

Iteratively applying the proof rules to a conjunction of word equations gives rise
to a proof tree growing downwards. Given the proof rules Ry, ..., Rg in Fig. 2,
we represent a proof tree as a tuple 7 = (N, a, E, \) where:
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— N is a finite set of nodes;

— F C N x N is a set of edges, such that (N, E) is a directed tree. An edge
(ns,n;) € E implies that n; is derived from n; by applying a proof rule;

— a: N — For U {SAT,UNSAT} is a function mapping each node n € N to a
formula or to a label SAT, UNSAT;

— A : E — R is a function that assigns to each edge a proof rule.

A path in the proof tree is a sequence of edges starting from the root and ending
with a leaf node. Due to local completeness, if there is a leaf node that is SAT,
then the word equation at the root node is satisfiable. Due to soundness, if all
the leaf nodes are UNSAT, then the formula at the root node is unsatisfiable.

Figure 3 illustrates the proof tree generated by applying the proof rules in
Fig. 2 on the word equation ¢ = (XbY = bX X 7). In this example, b € X' and
X,Y,Z € I'. The application of R; on the root generates two branches. While
exploring the left branch first yields a solution (SAT) at a depth of 3, iteratively
navigating through the right branch of R7 leads to non-termination since the
length of the word equation keeps increasing.

XbY = bXXZ
R Xe X~ bX'

bY =bZ X'bY =bX'bX'Z

1 X' — ! "
&,R{ Yoz | 5 ZmYZ R7{ be

e=c¢€ Y'=¢ e=2' bY = bbZ X"bY = bX"00X"Z
! " _ " __ m
R2,R1{ lR&Rl{ l 33731{ l R5,R7{YHN._>W R7{X _/\)‘( =bX
SAT SAT SAT UNSAT

Fig. 3. Proof tree resulting from the word equation XbY = bX X7

3.3 GNN-Guided Split Algorithm

We use the proof rules in Fig.2 and the idea of iterative deepening from [32]
(combination of depth- and breadth-first search in a tree) to solve word equa-
tions, as shown in Algorithm 1. This algorithm aims to check the satisfiability
of word equations ¢ = (A, wl = wf).

Algorithm 1 receives as parameter a backtrack strategy BT € {BT1, BT,
BT3}, which determines when to stop exploring a path of the proof tree
and return to a previous branching point. The algorithm calls the function
solveEqsRec (Algorithm 2), which returns the satisfiability status by exploring a
proof tree recursively. At each branching point in this tree, if at least one child
node is SAT, the algorithm concludes that ¢ is SAT and terminates (Line 13
of solveEqsRec). Conversely, if every child node is UNSAT, the current node is
marked as UNSAT (Line 19 of solveEgsRec), and the algorithm backtracks to the
last branching point. A formula ¢ is considered UNSAT only after all branches
have been checked and found to be UNSAT.

We explore three different backtrack strategies, BT1, BT3, and BT's:
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— BT;: This strategy performs depth-first search until it finds a SAT node or
exhausts all branches to conclude UNSAT. It may lead to non-termination of
the algorithm in proof trees with infinite branches, and can miss solutions;
an example for this is the rightmost branch of Fig. 3.

— BTy: This hybrid strategy imposes a limit, {p7,, on the depth to which a
proof branch is explored. When the maximum depth lpr, is reached, the
proof search backtracks to the last branching point, and Ipr, is globally
increased by lg;’; (line 3 of solveEgsRec). Similarly as BT'1, this strategy can
miss solutions of word equations.

— BTg3: This strategy performs the classical depth-first search with iterative
deepening, by setting an initial limit {p7, on the exploration depth. This
limit is increased (line 8 of solveEqs) when no node with label SAT is found
but the tree was not fully explored yet. This strategy is complete in the sense
that it will eventually find a solution for every satisfiable formula.

The performance and termination of the algorithm are highly influenced by
the order in which we explore the proof tree. This order is determined by the
orderBranches function (Line 8 of solveEgsRec). Our main goal in this paper is
to study whether the integration of GNN models within orderBranches is able
to optimise solving time or make it more likely for the algorithm to terminate.

For a conjunction of multiple word equations, deciding which word equation
to work on first is also important for performance. Our current proof rules only
rewrite the leftmost equation in a conjunction; reordering word equations is
beyond the scope of this paper. We discuss this point further in Sect. 7.

The correctness of Algorithm 1 directly follows from the soundness and local
completeness of the proof rules in Fig. 2:

Lemma 2 (Soundness of Algorithm 1). For a conjunction of word equations
o, if Algorithm 1 terminates with the result SAT or UNSAT, then ¢ is SAT or
UNSAT, respectively.

Input: Alphabet X and variables I';
Word equations ¢ = (AJ_; wﬁ =w});
Backtrack strategy BT € {BT1, BT, BT3};
Global backtrack limits Ip7, , l?,ﬁg, 1BTy-

Output: The status of ¢: SAT, UNSAT, or UNKNOWN

begin

res «— UNKNOWN

if BT € {BT1,BT>} then

L res «— solveEgqsRec(¢,0, BT, X, I")

BN R

if BT = BT3 then
do
res «— solveEqsRec(¢,0, BT3, X, T")
Iprg < lprg +1
while res # UNKNOWN

© 0N,

10 return res

Algorithm 1: The top-level algorithm solveEqs for word equations
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4 Guiding the Split Algorithm

This section describes how to train and apply the GNNs in the orderBranches
function in Algorithm 2. We start by describing five graph representations for
a conjunction of word equations, which encode word equations in form of text
to graph representations to be readable by GNNs. Then, we explain how to
train our classification tasks on GNNs and collect the training data. Finally, we
describe different ways to apply the predicted results back to algorithm.

Input: Alphabet X' and variables I
Word equations ¢ = (A, w} = w?);
Backtrack strategy BT € {BT1, BT, BT3};
Current exploration depth currentDepth;
Global backtrack limits Ipr,, 155, l5T,-

Output: The state of ¢: SAT, UNSAT, or UNKNOWN

1 begin

2 if BT = BT A currentDepth > lgr, then

3 Ipr, — T, + 37

4 return UNKNOWN

5 if BT = BT3 A currentDepth > lgr, then

6 L return UNKNOWN

branches «— applyRules(¢p, X, I)

8 branches «— orderBranches(branches)
9 unknownFlag < false

10 foreach child in branches do

11 res < solveEqsRec(child, currentDepth + 1, BT, X, I')
12 if res = SAT then

13 | return SAT

14 if res = UNKNOWN then

15 L unknownFlag «— true

16 if unknownFlag then

17 ‘ return UNKNOWN

18 else

19 L return UNSAT

Algorithm 2: Recursive exploration solveEgsRec of word equations

4.1 Representing Word Equations by Graphs

Graph representations can capture the structural information in word equations
and are the standard input format for GNNs. To understand the impact of the
graph structure on our framework, we have designed five graph representations
for word equations.

In order to extract a single graph from the equations, we first translate a
conjunction /\?:1 wl = w!' of word equations to a single word equation, by

. =
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inserting a distinguished letter # ¢ X as follows:
wiHwhH#. Hwl, = wiHwH#. ], (3)

Then, we construct the graph representations for the word equation in (3).
A graph representation G = (V, E, Vi, Vi) of a word equation consists of a set
of nodes V', a set of edges F C V x V, a set of terminal nodes Vp C V, and a
set of variable nodes Vi, C V. We start constructing the graph by drawing the
“=" symbol as the root node. Its left and right children are the leftmost terms of
both sides of the equation, respectively. The rest of the graph is built following
the choice of the graph type:

— Graph 1: Inspired by Abstract Syntax Trees (ASTs). Each letter and variable
is represented by its own node, and words are represented by singly-linked
lists of nodes.

— Graph 2: An extension of Graph 1, introducing additional edges from each
term node back to the root node.

— Graph 3: An extension of Graph 1 which incorporates unique variable nodes.
In this design, nodes representing variables are added, which are connected
to their respective occurrences in the linked lists. This representation aims at
facilitating the learning of long-distance variable relationships by GNNs.

— Graph 4: Similar in approach to Graph 3, but introducing unique nodes for
letters instead of variables.

— Graph 5: A composite structure that merges the concepts of Graphs 3 and
4. Tt includes unique nodes for both variables and letters..

Figure 4 illustrates the five graph representations of the conjunction of word
equation aXY#bc = XY #Zc, where {X,Y,Z} C I" and {a,b,c} C X.

= O O 9 m

Equal sign  Variable Terminal ~ Special symbol #

Graph 1 Graph 2 Graph 3 Graph 4 Graph 5

Fig. 4. The five graph representations for the word equation a XY #bc = XY#Zc
where XY, Z are variables and a, b, ¢ are terminals
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4.2 Training of Graph Neural Networks

Forward Propagation. In the orderBranches function of Algorithm 1, we sort
the branches by using the predictions from a trained GNN model. This GNN
model performs a multi-classification task. Given a list of branches (by,...,b,)
resulting from a rule application, we expect the trained GNN model to output
a list of floating-point numbers Y, = (41, - - -, Un), representing priorities of the
branches. A higher value for ¢; indicates a higher priority of the branch. For
instance, given a node with two children b; and by, the output from the model
could be Y, = (0.3,0.7), expressing the prediction that by will lead to a solution
more quickly than b; and should be explored first. We detail the process of
deriving Y, at each split point using GNNs, exemplified by using n = 2.

Propagation on Graphs. To explain forward propagation, suppose a node
labelled with formula ¢ in the proof is rewritten by applying rule Rz, resulting
in direct children labelled with ¢1, ¢2. The situation is similar for applications
of Rg.

Formulas ¢, ¢1, and ¢o are transformed to graphs Go = (VO, EY, V2, V2 ),
G, = (VLELVE VL), and Go = (V2 E? VE V2 ), respectively, according
to one of the encodings in Sect.4.1. Fach node in those graphs is then assigned
an initial node representation in R™, which is determined by the node type:
variable, letter, =, or #. This gives rise to three initial node representation
functions H? : V¥ — R™ for i € {1,2,3}, mapping the nodes of the graphs to
vectors of real numbers.

Equation (2) defines how node representations are updated. Iterating the
update rule, we obtain node representations H! = GCN(H! ', E) for i €
{1,2,3} and t € {1,..., T}, where the relation E* is used to identify neighbours.
Subsequently, representation of the graphs as a whole are derived by summing
up the node representations at point 7', resulting in Hg, = >, oy HE (v).

Finally, these graph representations are concatenated and fed to a classifier
MLP : (R™)3 — R2 to calculate scores Yo = MLP(Hg,||Hg,||Hg,), where ||
denotes concatenation of vectors. The whole process generalizes in a straightfor-
ward way to branching points in the proof tree with n children.

Backward Propagation. The trainable parameters of the model, as described
above, are the initial node representations for the four types of graph nodes
and the parameters of the GCNs. Those trainable parameters are optimized
together by minimizing the categorical cross-entropy loss between the predicted
label g; € Y,, and the true label y; € Y,, using the following equation:

N
1 .
loss = N ; yi log(9;) (4)

where N is the number of split points in a training batch. We explain how to
collect the training data Y,, in the next section.
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4.3 Training Data Collection

With our current algorithm, UNSAT problems always require an exhaustive
exploration of a proof tree; branch ordering therefore does not affect the solving
time. We have thus focused on optimizing the process of finding solutions and
only extract training data from SAT problems.

To collect our training labels, we construct the complete proof tree for given
conjunctions of word equations, up to a certain depth. The tree enables us to
identify cases of multiple SAT pathways within the tree, and to identify situations
where one branch leads to a solution more quickly than other branches.

Each node v of the proof tree with multiple children is labelled based on
two criteria: the satisfiability status (SAT, UNSAT, or UNKNOWN) of the for-
mula, and the size of the proof sub-tree underneath each of the direct children.
Assume that node v has n children, each of which has status SAT, UNSAT, or
UNKNOWN, respectively. If there is exactly one child of v, say the i’th child,
that is SAT, then the label of v is a list of integers (z1,...,2,) with z; = 1
and z; = 0 for j # ¢. If multiple children are SAT, we examine the size of the
sub-tree underneath each of those children, and label all children with minimal
sub-trees with 1 in the list (z1,...,2,).

More formally, suppose a proof tree 7 = (N, «, E, A). The satisfiability sta-
tus o(v) of a node v € N is determined by:

alv) if a(v) € {SAT, UNSAT, UNKNOWN}
SAT if there is w € V with o(u) = SAT and (v,u) € E
o(v) = ¢ UNKNOWN otherwise, if there is u € V with o(u) = UNKNOWN
and (v,u) € B
UNSAT otherwise

(5)

The size A(v) of the sub-tree underneath a node v is defined by:
Aw) =1+ > A
uweEN,(v,u)€E

Finally, the label Y}V = (y1,...,yn) of a node v with o(v) = SAT and n
children vy, ..., v,, where y; € {0, 1}, is defined by:

—

1 if o(v;) = SAT and A(v;) = min S
0 otherwise
S = {A(v;) | o(v;) = SAT}
When ", y; > 1, we discard some children with label 1 until ", y; =1 to
make sure that the label for each split point is consistent.

4.4 Guidance for the Split Algorithm Using the GNN Model

In Algorithm 1, we introduce five strategies for the orderBranches function
implementation, designed to evaluate the efficiency of deterministic versus



Guiding Word Equation Solving Using Graph Neural Networks 291

stochastic methods in branch ordering and to investigate the interplay between
fixed and variable branch ordering approaches:

— Fixed Order: Use a predetermined branch order, defined before execution. In
our experiments, we simply use the order in which the branches are displayed
in Fig. 2.

— Random Order: Reorder branches randomly.

— GNN (S1): Exclusively use the GNN model for branch ordering.

— GNN-fixed (S2): A balanced approach with a 50% chance of using the GNN
model and a 50% chance of using the fixed order.

— GNN-random (S3): Similar to S2, but with the alternative 50% chance
dedicated to random ordering.

5 Experimental Results

This section presents the benchmarks used for our experiments and details the
results with the different versions of our algorithm. It also provides a compre-
hensive comparison with other state-of-the-art solvers.

5.1 Implementation of DragonLi

Dragonli [2] is developed from scratch using Python 3.8 [49]. We train the mod-
els with PyTorch [42] and construct the GNNs using the Deep Graph Library
(DGL) [51]. For tracking and visualizing training experiments, mlflow [15] is
employed. Proof trees and graph representations of word equations are stored in
JSON [43] format, while graphviz [21] is utilized for their tracking and visual-
ization.

5.2 Benchmarks Selection

We consider two kinds of benchmarks: benchmarks that are artificially gen-
erated based on the benchmarks used to evaluate the solver Woorpje [19], as
well as benchmarks extracted from the non-incremental QF_S, QF_SLIA, and
QF_SNLIA track of the SMT-LIB benchmarks [1]. We summarize the bench-
marks as following:

— Benchmark 1 is generated by the mechanism used in Woorpje track I. Given
finite sets of letters C' and variables V', we construct a string s with maxi-
mum length of k& by randomly concatenating selected letters from C. We then
form a word equation s = s and repeatedly replace substrings in s with the
concatenation of between 1 and 5 fresh variables. This procedure guarantees
that the constructed word equation is SAT.



292 P. A. Abdulla et al.

— Benchmark 2 is generated by the mechanism used in Woorpje track III. It
first generates a word equation using the following definition:

XnaXpbX, 10X, o 0X) =
CLXan_an_len_QXn_Qb ce leleaa (6)

where X, ..., X,, are variables and a and b are letters. We then generate a
word equation using the mechanism for Benchmark 1, and replace letters b in
(6) randomly with the left-hand side or the right-hand side of that equation.

— Benchmark 3 is generated by conjoining multiple word equations that were
randomly generated using the mechanism described in Benchmark 1. This
procedure mainly produces benchmarks that are UNSAT.

— Benchmark 4 is extracted from benchmarks from the non-incremental QF_S,
QF_SLIA, and QF_SNLIA tracks of SMT-LIB. We obtain word equations by
removing length constraints, regular expressions, and unsupported Boolean
operators, which are not considered in this paper. As a result, benchmarks
after transformation can be SAT even if the original SMT-LIB benchmarks
were UNSAT.

Table 1. Number of SAT (v'), UNSAT (x), UNKNOWN (c0), and evaluation (Eval)
problems in the four benchmarks

Benchmark 1 |Benchmark 2 Benchmark 3 Benchmark 4
Total: 3000 | Total: 21000 Total: 41000 Total: 2310
2000 Eval 20000 Eval/40000 Eval|1855 Eval
v |X|oo v [X|oo v X oo v X |oo
1997/0 |3 11000[1293|0 18707/1000/1449 113737414/1000(1673/16/166/455

Table 1 presents the number of problems in each benchmark. Benchmark
4 originates from a collection of 100805 SMT-LIB problems; after transforma-
tion, we obtain 2310 problems. For evaluation, we selected hold-out sets of 1000
(Benchmarks 1-3) and 455 (Benchmark 4) problems were selected uniformly at
random; those sets were exclusively used for evaluation, not for training or for
tuning hyper-parameters. All benchmarks, as well as our implementation and
chosen hyper-parameters are available on Zenodo [3].

We then applied the split algorithm (Algorithm 1) to all benchmarks with
the fized reordering strategy, to determine the number of SAT, UNSAT and
UNKNOWN problems. After the dispatch phase, we only retained SAT problems
for the construction of the training dataset.

5.3 Experimental Settings

Dragonli was parametrized with values lgpo = 500, lths% = 250,lp73 = 20
for Algorithm 1. In addition, we chose a hidden layer of size 128 for all neural
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Table 2. Evaluation on three metrics for different solvers. The labels SAT, UNS, UNI,
CS, and CU are abbreviation of SAT, UNSAT, unique solved, commonly solved SAT,
and commonly solved UNSAT, respectively. The labels Fixed, Random, and GNN are
the three variations of DragonLi in Sect.4.4. Entries marked “-” do not apply. Values

less than 0.1 are rounded to 0.1. GNN rows for benchmarks 1-4 share the configuration
(BT», S1,G5).

Bench Solver Number of solved Average
problems solving time (split numbet)
SAT |UNS|UNI|CS |CU|SAT UNS Cs CU
1 Fixed (999 |- |0 [777/0 |4.1 - () 4.0 - (-)
(1000 (182.0) (169.0)
SAT)
Random (996 |- 0 4.2 - () 4.1 - ()
(349.6) (269.8)
GNN 995 |- 0 7.6 - (-) 7.0 - (-)
(215.7) (162.3)
cves 1000- |0 0.1 (-) - () 0.1 (-) - ()
Ostrich (918 |- |0 20.4 (-) - () 19.6 (-) - (-)
Woorpje (967 |- 0 1.6 (-) - (=) 0.5 (-) - (-)
Z3 902 |- 0 3.4 (-) - () 2.4 (-) - ()
Z3-Noodler|935 |- [0 1.9 (-) - () 1.1 (-) S
2 Fixed (33 [0 |10 |1 |0 [13.2 - () 4.8 (7) - (-)
(1000 (1115.2)
in
total)
Random |41 0 6 11.7 - () 4.2 (60) - (-)
(3879.5)
GNN 71 0 |27 46.0 - () 5.1 (5) - ()
(1813.5)
cves 4 |2 2.0 (-) 0.1 (-) 0.1 (-) - ()
Ostrich |14 |43 |44 40.7 (-) 31.8 () 2.5 (-) - (-)
Woorpje (23 |0 2 38.3 (-) - () 0.1 (-) - ()
z3 [§ 0 2 0.1 (-) - (=) 4.2 (-) - (-)
Z3-Noodler[19 |0 0 45.8 (-) - () 4.2 (-) - ()
3 Fixed 32 |79 |0 |23 |50 |5.2 65.8 3.6 38.3
(1000 (1946.2) (4227.0) (57.0) (796.6)
in
total)
Random |32 79 0 9.5 65.0 3.8 38.5
(3861.8) (4227.0) (61.7) (796.6)
GNN 32 65 |0 214.3 1471.2 4.6 84.0
(1471.2) (1471.2) (63.7) (796.6)
cves 32 (943 |2 0.1 (-) 0.3 (=) 0.1 (-) 0.3 (-)
Ostrich |27 [926 |0 5.8 (-) 4.7 (-) 4.6 () 4.5 ()
Woorpje |34 723 |1 12.4 (-) 12.3 (-) 0.1 (-) 23.2 (-)
z3 26 (953 |10 5.6 (-) 0.5 (-) 4.7 (-) 0.1 (-)
Z3-Noodler|28 926 |0 22.7 (-) 0.3 (=) 8.9 (-) 0.1 (-)
4 Fixed 416 |6 0 403|2 |5.1 17.7 5.1 5.0
(455 (105.5) (17119.5)  |(51.0) (246)
in
total)
Random (415 |6 0 4.9 17.9 4.9 4.4
(61.3) (17119.5)  |(38.1) (246)
GNN 418 |5 0 5.5 31.8 5.3 8.8
(118.3) (5019.6) (49.0) (246)
cves 406 [34 o 0.1 (-) 0.1 (-) 0.1 (-) 0.1 (-)
Ostrich 406 [6 |0 1.4 (-) 1.2 (-) 1.4 (-) 1.2 (1)
Woorpje 420 2 [0 0.2 (-) 3.6 (-) 0.2 (-) 3.6 (-)
z3 420 |10 |0 0.1 (-) 0.1 (-) 0.1 (-) 0.1 (-)
Z3-Noodler|420 [35 |1 0.1 (-) 0.1 (-) 0.1 (-) 0.1 (-)




294 P. A. Abdulla et al.

Table 3. Detailed results for number of solved problems of DragonLi in terms of five
graph representations (G1 to G5 represent Graph 1 to 5 in Sect.4.1), three strategies
to apply GNN back to the algorithm (S1, S2, S3 in Sect.4.4), and three backtracking
strategies (BT1, BT>, BT3 in Sect. 3.3). The column GT denotes graph type.

GT|Benchmark 1 Benchmark 2

BTy BT, BT; BT, BT, BTs3

S1/S2 |S3 |S1 |S2 |S3 |S1 |S2 |S3 |S1 |S2 [S3 |[S1 |S2 |S3 |S1 [S2 |S3

G1/991{1000(996 997999 [999|584/627|624/57 |48 44 |53 |45 40 |3

(G21{998/1000 |1000/998/1000/998|584/627/62449 |46 |41 |53 |40 (50 (3

G31997/1000 998 998/1000/999|584/627/624/53 |43 |49 |65 |46 (55 (3
3
3

G41985(999 [997 9841999 |995/584/627|624/65 |52 38 |59 |54 |44
G5 (995/1000 {999 9951000(995/584/627|624/64 |46 44 |71 |54 |50
GT|Benchmark 3 Benchmark 4

BT BT> BT; BTy BT, BT;

S1/S2 |S3 |S1 |S2 |S3 |S1 |S2 |S3 |S1 [S2 [S3 |[S1 |S2 |S3 |S1 [S2 |S3
G132 32 31 |32 |32 |32 |14 |16 |16 413/415/413/417 417/416/400/404/402
G234 32 32 34 |32 |34 |13 |16 |16 416/416/416/418 418/417/400/402/403
G31(32 32 32 |31 (32 |33 |13 |16 |16 |416/416417|418 |417|415/400/402/404
G435 32 32 34 |32 |32 |14 |16 |16 414/413/415/417 417/416/400/403/403
G531 31 |31 |32 |31 |32 |14 |16 |16 415/416/414/418/417|416/400/402/402

WlWwW wWw|w| w
WlWw wWw|w| w

networks, and used a two message-passing layer (i.e. t = 2 in Eq. 1) for the GNN.
Each problem in the benchmarks is evaluated on a computer equipped with two
Intel Xeon E5 2630 v4 at 2.20 GHz/core and 128GB memory. The GNNs are
trained on A100 GPUs. We measured the number of solved problems and the
average solving time (in seconds), with timeout of 300s for each proof attempt.

5.4 Comparison with Other Solvers

In Table 2, we evaluate three versions of our algorithm based on their implemen-
tation of the orderRules function: the fixed, random, and GNN-guided order
versions (listed in Sect. 4.4). The performance of the GNN-guided DragonLi (row
GNN in Table2) for each benchmark is selected from the best results out of
45 experiments (see Table3). These experiments use different combinations of
five graph representations, three backtrack strategies, and three GNN guidance
strategies, as shown in bold text in Table 3. We compare the results with those of
five other solvers: Z3 (v4.12.2) [39], Z3-Noodler (v1.1.0) [17], cvch (v1.0.8) [10],
Ostrich (v1.3) [16], and Woopje (v0.2) [19].

The primary metric is the number of solved problems. DragonLi outperforms
all other solvers on SAT problems in benchmark 2. Notably, the GNN-based
DragonLi solves the highest number of SAT problems. For the conjunction of
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multiple word equations (benchmark 3 and 4), DragonLi’s performance is com-
parable to the other solvers. The order of processing word equations is crucial for
those problems; currently, our solver uses only a predefined sequence, indicating
significant potential for improvement. A limitation of DragonLi is determining
UNSAT cases, as it requires an exhaustive check of all nodes in the proof tree.

In terms of average solving time for solved problems, GNN-based DragonlLi
does not hold an advantage. This is mainly due to the overhead associated with
encoding equations into a graph at each split point and invoking GNNs. Fur-
thermore, Dragonli is written in Python and not particularly optimized at this
point, so that there is ample room for improvement in future efforts.

The measurement of the average number of splits in solved problems is used
to gain insight into the efficiency of the different versions of our algorithm. For
benchmark 1 and 2, the GNN-guided version outperforms the others on the
commonly solved problems. However, for benchmarks 3 and 4, the GNN-guided
version does not show advantages. This is for the same reason mentioned in the
metric of the number of solved problems; namely, the performance is also influ-
enced by the order of processing equations when dealing with the conjunction
of multiple word equations.

We summarize the experimental results compared with some of the leading
string solvers as follows:

1. DragonlLi shows better or comparable performance on SAT problems but is
limited on UNSAT problems. This occurs because the split algorithm con-
cludes SAT upon finding one SAT node, but can conclude UNSAT only after
exhaustively exploring the proof tree. In contrast, other solvers may invest
more time in proving UNSAT cases, for instance by reasoning about string
length or Parikh vectors.

2. DragonlLi performs better than other solvers on single word equations (e.g.,
benchmark 2) and comparably on conjunctions of multiple word equations.
This performance difference is because the initial choice of word equation for
splitting is crucial for the split algorithm, and this aspect is not optimized
currently.

3. Incorporating GNN guidance into the proof tree search enhances the perfor-
mance of the pure split algorithm for SAT problems, but currently does not
lead to an improvement for UNSAT problems.

5.5 Ablation Study

Table 3 displays the number of problems solved in 45 experiments across all
benchmarks using the GNN-guided version.

In terms of backtrack strategies, BT} performs a pure depth-first search, but
it already has good performance. BT5 performs a depth-first search controlled by

step . . .

parameters gy, and lp7, , and in many cases, it delivers the best performance.
BTj; conducts a systematic search on the proof tree, which is complete for prov-
ing problems SAT, but turns out to be relatively inefficient in the experiments
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and solves the fewest problems given a fixed timeout. This indicates that more
sophisticated search strategies may lead to even better performance.

In terms of the guiding strategies (S1, S2, S3), using the GNN alone (S1) to
guide the branch order is better than combining it with predefined and random
orders (S2 and S3) in most cases. This indicates that the GNN model success-
fully learns useful patterns at each split point and can be used as a stand-alone
heuristic for branching.

In terms of the five graph representations, Graph 1 has the simplest structure,
which represents the syntactic information of the word equations and thus incurs
the least overhead when we call the model at each split point. This yields aver-
age performance compared to other graph representations. The performances of
Graph 2 are weaker than others; this is probably due to the extra edges not
providing any benefits for prediction, but leading to additional computational
overhead. Graphs 3 and 4 emphasize the relationships between terminals and
variables, respectively, thus the performance is biased by individual problems.
Graph 5 considers the relationships for both terminals and variables, thus it
has bigger overhead than Graphs 1, 3, and 4, but it offers relatively good perfor-
mance. This shows that representing semantic information of the word equations
well in graphs helps the model to learn important patterns. In summary, the set-
ting (BT5, S1, Graphb) performs the best.

6 Related Work

There are many techniques within solvers supporting word equations, as well as
in stand-alone word equation solvers. For instance, the SMT solvers Norn [5] and
TRAU [6] introduce several improvements on the inference rules [4], including
length-guided splitting of equalities and a more efficient way to handle dise-
qualities. The stand-alone word equation solver Woorpje [19] reformulates the
word equation problem as a reachability problem for nondeterministic finite
automata, then encodes it as a propositional satisfiability problem which can
be handled by SAT solvers. In [20], the authors propose a transformation sys-
tem that extends the Nielsen transformation [34] to work with linear length
constraints. This transformation system can be integrated into existing string
solvers such as Z3STR3 [14], Z3SEQ [39], and CVC4 [11], thereby advancing the
efficiency of word equation resolution.

GNNs excel at analyzing the graph-like structures of logic formulae, offering
a complementary approach to formal verification. FormulaNet [50] is an early
study guiding the premise selection for Automated Theorem Provers (ATPs).
It uses MP-GNNs [24] to process the graph representation of the formulae in
the proof trace extracted from HOL Light [26]. With more studies [18,29,41]
exploring this path, this trend quickly expands to related fields. For instance,
for SAT solvers [33,52], NeuroSAT [45,46] predicts the probability of variables
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appearing in unsat cores to guide the variable branching decisions for Conflict-
Driven Clause Learning (CDCL) [37]. Moreover, GNNs have been combined with
various formal verification techniques, such as scheduling SMT solvers [28], loop
invariant reasoning [47,48], or guiding Constraint Horn Clause (CHC) solvers [7,
27,35]. They provide the empirical foundations for designing the learning task
in Sect. 4, such as the graph representation of word equations and forming the
learning task in split points.

7 Conclusion and Future Work

This study introduces a GNN-guided split algorithm for solving word equations,
along with five graph representations to enhance branch ordering through a
multi-classification task at each split point of the proof tree. We developed our
solver from scratch instead of modifying a state-of-the-art SMT solver. This deci-
sion prevents the confounding influences of pre-existing optimizations in state-
of-the-art SMT solvers, allowing us to isolate and evaluate the specific impact
of GNN guidance more effectively.

We investigate various configurations, including graph representations, back-
track strategies, and the conditions for employing GNN-guided branches, aiming
to analyze the behaviors of the algorithm across different settings.

The evaluation tables reveal that while the split algorithm effectively solves
single word equations, it does not demonstrate marked improvements for mul-
tiple conjunctive word equations relative to other solvers. This discrepancy is
attributed to the significance of the processing order for conjunctive word equa-
tions, where our current solver employs a predefined order. It is possible to
make use of a GNN to compute the best equation to start with. However, this
involves ranking a list of elements with variable lengths, rather than performing
a fixed-category classification task, and requires completely different training
for this specific task. Consequently, as future work, we aim to investigate both
deterministic and stochastic strategies to optimize the ordering of conjunctive
word equations for the split algorithm. Our algorithm is also limited in handling
UNSAT problems because it can only conclude UNSAT by exhausting the proof
tree. This can be improved in future work.
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Abstract. Nielsen transformation is a standard approach for solving
word equations: by repeatedly splitting equations and applying simpli-
fication steps, equations are rewritten until a solution is reached. When
solving a conjunction of word equations in this way, the performance
of the solver will depend considerably on the order in which equations
are processed. In this work, the use of Graph Neural Networks (GNNs)
for ranking word equations before and during the solving process is ex-
plored. For this, a novel graph-based representation for word equations is
presented, preserving global information across conjuncts, enabling the
GNN to have a holistic view during ranking. To handle the variable num-
ber of conjuncts, three approaches to adapt a multi-classification task
to the problem of ranking equations are proposed. The training of the
GNN is done with the help of minimum unsatisfiable subsets (MUSes) of
word equations. The experimental results show that, compared to state-
of-the-art string solvers, the new framework solves more problems in
benchmarks where each variable appears at most once in each equation.

Keywords: Word equation - Graph neural network - String theory.

1 Introduction

A word equation is an equality between two strings that may contain variables
representing unknown substrings. Solving a word equation problem involves find-
ing assignments to these variables that satisfy the equality. Word equations are
crucial in string constraints encountered in program verification tasks, such as
validating user inputs, ensuring proper string manipulations, and detecting po-
tential security vulnerabilities like injection attacks. The word equation problem
is decidable, as shown by Makanin [26]; while the precise complexity of the prob-
lem is still open, it is know to be NP-hard and in PSPACE [31].

Abdulla et al. recently proposed a Nielsen transformation-based algorithm
for solving word equation problems [6,29]. This algorithm solves word equations
by recursively applying a set of inference rules to branch and simplify the prob-
lem until a solution is reached, in a tableau-like fashion. When multiple word
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equations are present, the algorithm must select the equation to process next
at each proof step. This selection process is critical and heavily influences the
performance of the algorithm, as the unsatisfiability of a set of equations can of-
ten be shown by identifying a small unsatisfiable core of equations. At the same
time, the search tree can contain infinite branches on which no solutions can be
found, so that bad decisions can lead a solver astray. The situation is similar to
the case of first-order logic theorem provers, where the choice of clauses to pro-
cess plays a decisive role in determining efficiency. In the latter context, several
deep learning techniques have been introduced to guide Automated Theorem
Provers (ATPs) [37,11,5]. However, for word equation problems, the application
of learning techniques for selecting equations remains largely unexplored.

In this work, we employ Graph Neural Networks (GNNs) [10] to guide the
selection of word equations at each iteration of the algorithm. Our research com-
plements existing techniques for learning branching heuristics in word equation
solvers [6]. We refer to the selection step as the ranking process. For this, we en-
hanced the existing algorithm [6] to enable the re-ordering of conjunctive word
equations. The extension preserves the soundness and the completeness (for find-
ing solutions) of the algorithm. We refer to this extended algorithm as the split
algorithm throughout the paper.

The primary challenge in training a deep learning model to guide the ranking
process lies in managing a variable number of inputs. In our work, this specifically
involves handling a varying number of word equations depending on the input.
Unlike with branching heuristics, which have to handle only a fixed and small
number of branches (typically 2 to 3), the ranking process must handle a variable
number of conjuncts. To address this challenge, we adapt multi-classification
models to accommodate inputs of varying sizes using three distinct approaches.
Additionally, to effectively train the GNNs, we enhance the graph representations
of word equations from [6] by incorporating global term occurrence information.

Our model is trained using data from two sources: (1) Minimal Unsatisfiable
Subsets (MUSes) of word equations computed by other solvers, and (2) data
extracted by running the split algorithm with non-GNN-based ranking heuristics.
MUSes computed by solvers such as Z3 [28] and cvcb [9] help detect unsatisfiable
conjuncts early, enabling prompt termination and improved efficiency. When the
split algorithm tackles conjunctive word equations, each ranking decision creates
a branch in a decision tree. By extracting the shortest path from this tree, we
obtain the most effective sequence of choices, which we then use as training data.

Moreover, we explore seven options that combine the trained model with
both random and manually designed heuristics for the ranking process.

We evaluated our framework on artificially generated benchmarks inspired
by [14]. The benchmarks are divided into two categories: linear and non-linear,
where linear means that, within a single equation, a variable can occur only
once, while non-linear allows a variable to appear multiple times. Note that this
definition of linearity applies to individual equations: in systems with multiple
equations, even if each equation is linear, shared variables can cause a variable
to appear multiple times within the system.
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Finally, we compare our framework with several leading SMT solvers and
a word equation solver, including Z3, Z3-Noodler [13], cvcb, Ostrich [12], and
Woorpje [14]. The experimental results show that for linear problems, our frame-
work outperforms all leading solvers in terms of the number of solved problems.
For non-linear problems, when the occurrence frequency of the same variables
(non-linearity) is low, our algorithm remains competitive with other solvers.

In summary, the contributions of this paper are as follows:

— We adapt the Nielsen transformation-based algorithm [6] to allow control
over the ordering of word equations at each iteration.

— We develop a framework to train and deploy a deep learning model for
ranking and ordering conjunctive word equations within the split algorithm.
The model leverages MUSes generated by leading solvers and uses graph
representations enriched with global information of the formula. We propose
three strategies to adapt multi-classification models for ranking tasks and
explore various integration methods within the split algorithm.

— Experimental results demonstrate that our framework performs effectively
on linear problems, with the deep learning model significantly enhancing
performance. However, its effectiveness on non-linear problems is constrained
by the limitations of the inference rules.

2 Preliminaries

We first define the syntax of word equations and the concept of satisfiability.
Next, we explain the message-passing mechanism of Graph Neural Networks
(GNNs) and describe the specific GNN model employed in our experiments.

Word Equations. We assume a finite non-empty alphabet X' and write X* for
the set of all strings (or words) over X. The empty string is denoted by e. We
work with a set I of string variables, ranging over words in X*. The symbol -
denotes the concatenation of two strings; in our examples, we often write uv as
shorthand for u - v. The syntax of word equations is defined as follows:

Formulae ¢ ::= true | e A ¢ Words w =€ | t-w
Equations e :=w =w Terms t ::= X | ¢
where X € I' ranges over variables and ¢ € X over letters.
Definition 1 (Satisfiability of conjunctive word equations). A formula ¢
is satisfiable (SAT) if there exists a substitution w : I' — X* such that, when
each variable X € I in ¢ is replaced by w(X), all equations in ¢ hold.

Definition 2 (Linearity of a word equation). A word equation e is called
linear if each variable occurs at most once. Otherwise, it is non-linear.
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Graph Neural Networks. Message Passing-based GNNs (MP-GNNs) [17] are
designed to learn features of graph nodes (and potentially the entire graph) by
iteratively aggregating and transforming feature information from the neighbor-
hood of a node. Consider a graph G = (V, E), with V' as the set of nodes and
E CV xV as the set of edges. Each node v € V has an initial representation
z, € R™ and a set of neighbors N,, C V. In an MP-GNN comprising 7" message-
passing steps, node representations are iteratively updated. At each step ¢, the
representation of node v, denoted as h!, is updated using the equation:

by = me(pe({he " | w € No}), byt (1)

where h! € R" is the updated representation of node v after ¢ iterations, starting
from the initial representation h? = z,. The node representation of u in the
previous iteration ¢t — 1 is h!~!, and node u is a neighbor of node v. In this
context, p; : (R")‘N vl — R™ is an aggregation function with trainable parameters
(e.g., an MLP followed by sum, mean, min, or max) that aggregates the node
representations of v’s neighboring nodes at the ¢-th iteration. Along with this, 7; :
(R™)2 — R™ is an update function with trainable parameters (e.g., an MLP) that
takes the aggregated node representation from p; and the node representation of
v in the previous iteration as input, and outputs the updated node representation
of v at the ¢-th iteration.

In this study, we employ Graph Convolutional Networks (GCNs) [22] to guide
our algorithm due to their computational efficiency to generalize across tasks
without the need for task-specific architectural modifications. In GCNs; the node
representation h! of v at step t € {1,...,T} where T € N is computed by

ht = ReLU(MLP*(mean{h! ! | u € N, U {v}})), (2)

where each MLP! is a fully connected neural network, ReLU (Rectified Linear
Unit) [8] is the non-linear function f(z) = maz(0,x), and kY = z,,.

3 Split Algorithm with Ranking

Split Algorithm. Algorithm 1, SPLITEQUATIONS, determines the satisfiability
of a word equation formula ¢ by recursively applying the inference rules from
[6]. The inference rules are provided in Appendix E for convenient reference.

The algorithm begins by simplifying ¢, eliminating word equations with iden-
tical sides and word equations in solved form & = w (Line 2), and checking the
satisfiability of the conjunctive formula. If all word equations can be eliminated
in this way, then ¢ is SAT. If any conjunct is unsatisfiable (UNSAT), then ¢ is
UNSAT. Otherwise, the satisfiability status remains unknown (UKN). If ¢ is in
one of the first two cases, its status is returned (Line 3).

Otherwise (Line 3), RANKEQs orders all conjuncts using either manually de-
signed or data-driven methods. Next, the function APPLYRULES matches and ap-
plies the corresponding inference rules to generate branchesalternative prospec-
tive solving paths for the same equation. This step is called the branching process.
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Data: A formula ¢

Result: The satisfiability status of ¢ (i.e., SAT, UNSAT, or UKN) and the
simplified version of ¢

1 begin

2 (res, 1) <~ SIMPLIFYANDCHECKFORMULA(¢)

3 if res # UKN then return res, ¢ else

4 s = RANKEQS(v)) // Ranking process

5 Branches = APPLYRULES(¢)s) // Branching process

6 uknFlag < 0

7 for b in Branches do

8 resp, Yp=SPLITEQUATIONS(b)

9 if resy = SAT then return SAT, iy

10 if res, = UKN then uknFlag + 1

11 if uknFlag = 1 then return UKN, ¢ else return UNSAT, i

Algorithm 1: SPLITEQUATIONS algorithm.

Notably, rules R; and Rg generate two and three branches, respectively, while
all other rules do not cause any branching.

Next, the SPLITEQUATIONS call (Line 8) recursively checks the satisfiability
of each branch. Let {by,...,b,} be the set of branches. ¢ has status SAT if at
least one branch b; is satisfiable, UNSAT if all branches are unsatisfiable, and
UKN otherwise.

Since the inference rules apply to the leftmost equation, the performance and
termination of the algorithm are strongly influenced by both the order in which
branches are processed (Line 7) and the ordering of equations in ¢ (Line 4). While
the impact of branch ordering has been studied in [6], this paper explores whether
employing a data-driven heuristic in RANKEQS can enhance termination.

The baseline option to implement RANKEQS is referred to as RE1: Baseline.
It computes the priority of a word equation p using the following definition:

ife=c¢
otherwise, if e =u-voru-v=ce
otherwise, if a-u=b-voru-a=v-0b

otherwise, ifa-u=a-v

=
Il
Tt o W N =

otherwise

where a,b € X, and u, v are sequences of variables and letters. Smaller numbers
indicate higher priority, assigning greater precedence to simpler cases where sat-
isfiability is obvious. Word equations with the same priorities between 1 and
4 are further ordered by their length (i.e., the number of terms), with shorter
equations taking precedence. For word equations with a priority of 5, the orig-
inal input order is maintained. We refer to the split algorithm using RE1 for
RANKEQS as DragonLi. The correctness of Algorithm 1 follows directly from the
soundness and local completeness of the inference rules in [6]:
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Lemma 1 (Soundness of Algorithm 1). For a conjunctive word equation
formula ¢, if Algorithm 1 terminates with the result SAT or UNSAT, then ¢ is
SAT or UNSAT, respectively.

AND-OR Tree. The search tree explored by the algorithm can be represented
as an AND-OR tree, as shown in Figure 1. The example illustrates the three
paths, each placing different equations in the first position, generated by the
ranking and branching process to solve the word equation ¢ = (Xb =bXX Ae =
eNX =a), where a,be Y and X € I

Ezample 1. In the first step, ¢ can be reordered in three distinct ways by prior-
itizing one conjunct to occupy the leftmost position (we ignore the order of the
last two equations, as the order does not influence the next rule application).
Thus, the root of the tree branches into three paths. For each ranked formula, the
inference rules are then applied to execute the branching process. By iterating
these two steps alternately, the complete AND-OR tree is constructed. Notably,
continuously selecting the leftmost branch that prioritizes Xb = bX X at the
root and applying the left branch of R; may lead to non-termination, as the
length of the word equation keeps increasing. In contrast, prioritizing X = a at
the root results in a solution (UNSAT) at a relatively shallow depth, avoiding the
risk of non-termination caused by further ranking and branching. In this case,
exploring only a single branch during the ranking process suffices to determine
the satisfiability of ¢. This optimal path is highlighted with solid edges.

Xb:bg(X/\e:e/\X:a
Rank{ B o :
\Xb—bXXAe—eAX—a\ \e—eAXb—bXXAX—a\ [X=anXb=bXXNe=¢]
_ ! o l _ 1 _
Branch bX« R7 X=e ‘:'RZ R7: X =aX R;: X =c¢€
X'b—bX'bX'  beb Xb=bXXANX=a aX'=a e=a
ANe=¢€ Ne=¢€ ANaX'b=baX'aX' Ab=0b
Rank /\bX'—a Ae—a »’/ \\4 /\e—e /\e:e
Xb=bXX X=a
EiEEJ EEEEJ nX-a | (20 bxx m afeass
Branch Ru <R7 Ry (R Rs ,R: Ry Rp/ “Rr  Rr/ \*R7 Rs Ry |Ri [Rs iRo
UNSAT UNSAT ... UNSAT .. UNSAT ..

Fig.1: AND-OR tree resulting from the word equation Xb =bX X ANe=€eNX =
a. The formulas enclosed in boxes are generated by RANKEQS, while the formulas
without boxes are obtained from APPLYRULES.
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4 Guiding the Split Algorithm

This section details the training and application of a GNN model in Algorithm 1.
We first describe the process of collecting training data, followed by the graph-
based representation of each word equation. Next, we outline the training of
classification models to rank a set of word equations for ranking with varying
lengths. Finally, we discuss methods for integrating the trained model back into
the algorithm.

4.1 Training Data Collection

Assume that ¢ is an unsatisfiable conjunctive word equation consisting of a set
of conjuncts &.

Definition 3 (Minimal Unsatisfiable Set). A subset U C £ is a Minimal
Unsatisfiable Set (MUS) if the conjunction of U is unsatisfiable, and for all
conjuncts e € U, the conjunction of subset U \ {e} is satisfiable.

We collect training data from two sources: (1) MUSes extracted by other
solvers, including Z3, Z3-Noodler, cvch, and Ostrich; and (2) formulas from the
ranking process that lie on the shortest path from the subtree leading to UNSAT
in the AND-OR trees. A numerical example of these two sources is provided in
Section 5.2.

For training data from source (1), we first pass all problems to DragonlLi.
Next, we identify unsolvable problems and forward them to other solvers. If any
solver successfully solves a problem, we select the one that finds a solution in
the shortest time. This solver is then used to extract the MUS by exhaustively
checking the satisfiability of all subsets of the conjuncts. Finally, each conjunct
within a set of word equations is labeled based on its membership in the MUS
and its length.

Formally, given a formula ¢ = e; A -+ A e,, its conjuncts are denoted & =
{e1,...,en}, and an MUS U C £. The corresponding labels of ¢; € £ are Y;, =
{y1,...,Yn}, where y; € {0,1}, and their length is denoted |e;|. The label y; is
computed as follows:

{1 if e; € U and |e;| = min ({|e] | e € U}),
Yi = . (3)
0 otherwise.

To collect training data from source (2), we pass the problems, along with
the MUS extracted from other solvers, to DragonLi. If DragonLi solves the prob-
lem, multiple paths to UNSAT are generated by sequentially prioritizing each
equation at the leftmost position in the ranked word equation.

Subsequently, we export and label each conjunctive word equation along
the shortest path in the subtree leading to UNSAT. Formally, given a set of
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conjuncts £ = {ey,...,e,} of a conjunctive word equation, the corresponding
labels Y, = (y1,...,yn) is computed by

(4)

_J1 ife; in the shortest path of a subtree leading to UNSAT,
i 0 otherwise.

For both sources, when >_"" ; y; > 1, we discard the equation with label 1
until 37 | y; = 1 to ensure that the label for each ranking process is consistent.
When Z?Zl y; = 0, we discard this training data due to no positive label.

4.2 Graph Representation for Conjunctive Word Equations

The graph representation of a single word equation is discussed in [6]. However,
since word equations are interconnected through shared variables, ranking them
requires not only local information about individual equations but also a global
perspective. By considering the entire set of word equations collectively, we can
incorporate dependencies and shared structures, improving the ranking process.

To achieve this, we first represent each conjunctive word equation indepen-
dently. Then, we compute the occurrences of variables and letters across all
equations and integrate this global information into each individual graph rep-
resentation. This enriched representation captures both the complexity of indi-
vidual equations and their interactions within the system.

In details, the graph representation of a word equation is defined as G =
(V, E,v=, Vo, Var, VR, VE, VO VAL ), where V is the set of nodes, E C V x V
is the set of edges, and v— € V is a special node representing the “=" symbol.
The sets Vpr C V and Vi, € V contain letter and variable nodes, respectively.
Additionally, V2 and Vi} are special nodes representing letter occurrences and
V@, and Vi, analogously represent variable occurrences.

Figure 2 illustrates the two steps involved in constructing the graph repre-
sentation of the conjunctive word equations XaX = Y A aaa = XaY, where
{X,)Y}CTI'anda€e X:

— Step 1: Inspired by Abstract Syntax Trees (ASTs), we begin to build the
graph by placing the “=" symbol as the root node. The left and right chil-
dren of the root represent the leftmost terms of each side of the equation,
respectively. Subsequent terms are organized as singly linked lists of nodes.

— Step 2: Calculate the number of occurrences of all terms across the conjunc-
tive word equations. In this example, Occurrence(X) = 3, Occurrence(Y') =
2, and Occurrence(a) = 5. Their binary encodings are 11, 101, and 10, re-
spectively. We encode these as sequentially connected nodes: (Vit,,., Vi)
for X, (Vi},,. Vi) for Y, and (V}, V2, V}) for a. Finally, we connect the
roots of these nodes to their corresponding variable and letter nodes.

4.3 Training of Graph Neural Networks

In the function RANKEQS of Algorithm 1, equations can be ranked and sorted
based on predicted rank scores from a trained model. Given a conjunctive word
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O O & Gy W @

Equal . Lett Variable Variable Letter Letter
Symbol Variable etter Occurence 0 Occurence 1 Occurence 0 Occurence 1
XaX =Y aaa = XaY
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< @ @ |||
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Fig. 2: The steps for constructing graph representation for the conjunctive word
equations XaX =Y Aaaa = XaY where X,Y are variables and a is a letter.

equation ¢ = e; A- - - Aey, the model outputs a ranking, i.e., a list of real numbers
Y, = (41, - .-, Yn) in which a higher value indicating a higher rank. For example,
for a conjunctive word equation e; A eg, the model might output Yy = (0.3,0.7),
indicating that es is expected to lead to a solution more quickly than e;, and
the equations should be reordered as es A e;.

Forward Propagation. To compute this ranking, we first transform the word
equations {ei,...,e,} to their graph representations G = {Gq,...,G,} where
Gi = (V,E,v=, Vo, War, V2, Vi, V&, ., Vi ). Each node v € V is first assigned an
integer representing the node type: v € U{Vr, Vvar, Vo, Vi, V2urs Virar F U {v=}.
Those integers are then are passed to a trainable embedding function MLPy :
Z — R™ to compute the all initial node representations HY in G;.

Equation (2) defines how node representations are updated. By iterating
this update rule, we obtain the node representations H} = GCN(Hf_l, E) for
t € {1,...,T}, where the relation E is used to identify neighbors. Subsequently,
the representation of the entire graph is obtained by summing the node repre-
sentations at time step 7', resulting in Hg, = Y, Hf .

Then, we introduce three ways to compute the Y,

— Task 1: Each graph representation Hg, is given to a trainable classifier
MLP; : R™ — R?, which outputs z = MLP;(Hg,) = (21,22). The score for
graph i is then computed as y; = softmaa(z); for y; € Y,, where softmaa(z) =
(Z;iGZJ ey Z}f:'ezj ) and softmax(-); is the first element of softmaz(-). It
represents the probability of the class in the first index.

— Task 2: All graph representations in a conjunctive word equations are first
aggregated by Hg = > (Hg,,...,Hg, ). Then, we compute the score by of
each graph by y; = softmaz(MLPy(Hg,||Hg))1 for y; € Y, where MLP, :
R?™ — R? is a trainable classifier and || denotes concatenation of two vectors.
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— Task 3: We begin by fixing a limit n of equation within a conjunctive word
equation. For conjunctive word equations containing more than n word equa-
tions, we first sort them by length (in ascending order) and then trim the
list to n equations. Next, we compute scores for resulting equations using
Y, = MLP3(Hg,,...,Hq,) where MLP3 : R"™ — R™ is a trainable clas-
sifier. Scores for any trimmed word equations are set to 0. If a conjunctive
word equations contains fewer than n word equations, we fill the list with
empty equations to reach n, and then compute Y,, in the same way.

Backward Propagation. The trainable parameters of the model include the
weights of the embedding function MLPy, the classifiers MLP;, MLPs, MLP3,
and the GCNs. Those trainable parameters are optimized together by minimizing
the categorical cross-entropy loss between the predicted label g; € Y, and the
true label y; € Y,,, using the equation loss = —1 "7 y;log(y;) where n is the

n
number of conjuncts in the conjunctive word equations.

4.4 Ranking Options

In Algorithm 1, we introduce seven implementations of RANKEQS, aimed at
evaluating the efficiency of deterministic versus stochastic ranking methods.

— RE1 — Baseline: A baseline defined in Section 3.

— RE2 — Random: RE1 is first used to compute the priority of each word
equation, and then equations with a priority of 5 are randomly ordered. This
approach aims to add some random to the baseline.

— RE3 — GNN: Equation ranked at 5 by RE1 are then ranked and sorted
using the GNN model. While this option incurs higher overhead due to fre-
quent use of the GNN model, it provides the most fine-grained guidance.

— RE4 — GNN-Random: Based on RE3, there is a 50% chance of invok-
ing the GNN model and a 50% chance of randomly sorting word equations
with a priority of 5. This option provides insight into the performance when
introducing a random process into GNN-based ranking.

— RE5 — GNN-one-shot: Based on the priority assigned by RE1, the GNN
model is used to rank and sort equations with a priority of 5 the first time
they occur, while it is managed by RE1 in subsequent iterations. This option
invokes the GNN only once to minimize its overhead, while still maintaining
its influence on subsequent iterations. Ranking and sorting the word equation
early in the process has a greater impact on performance than do them later.

— RE6 — GNN-each-n-iteration: Based on RE3, instead of calling the
GNN model each time multiple word equations have priority 5, it is invoked
only every n = 5000 calls to the RANKEQS function. This option explores a
balance between RE3 and RES5.

— RE7 — GNN-formula-length: Based on RE3, instead of calling the
GNN model each time multiple word equations have priority 5, it is invoked
only after n = 1000 calls to the RANKEQS function when the length of the
current word equation does not decrease. This option introduces dynamic
control over calling the GNN model.
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5 Experimental Results

This section describes the benchmarks and the methods used for training data
collection. We also compare our evaluation data with leading solvers. The train-
ing and prediction workflow is detailed in Appendix F.

5.1 Benchmarks

We initially transformed real-world benchmarks from the non-incremental QF_S,
QF_SLIA, and QF_SNLIA tracks of the SMT-LIB benchmark suite [1], as well
as those from the Zaligvinder benchmark suite [2], into word equation prob-
lems by removing length constraints, boolean operators, and regular expressions.
However, these transformed problems were overly simplistic, as most solvers, in-
cluding DragonlLi, solved them easily. Consequently, we shifted to evaluating
solvers using artificially generated word equation problems inspired by prior re-
search [14,6]. We summarize the benchmarks as follows:

— Benchmark A1l: Given a finite set of letters T and a set of variables V', the
process begins by generating individual word equations of the form s = s,
where s is a string composed of randomly selected letters from 7. The max-
imum length of s is capped at 60. Next, substrings in s on both sides of the
equation are replaced n times with the concatenation of m fresh variables
from V. Here |T| = 6, |V| = 10, n € [0,5], and m € [1,5]. Finally, multi-
ple such word equations are conjoined to form a conjunctive word equation
problem. The number of equations to be conjoined is randomly selected be-
tween 1 and 100. Since each replacement variable is a fresh variable from V,
individual equations in the problem remain linear.

— Benchmark A2: This benchmark is generated using the same method as
Benchmark A1; however, different parameters are employed to increase the
difficulty while ensuring that the problem remains linear. Specifically, we use
|T| =26, |V| =100, n € [0,16], and m = 1.

— Benchmark B: This benchmark is generated by the same method as Bench-
mark A1, except it does not use fresh variables to replace substrings in s. This
causes a single variable to potentially occur multiple times in an equation,
making the problem non-linear. The number of equations to be conjoined is
randomly picked between 2 and 50,and the maximum length of s is capped
at 50. In this benchmark, we use |T| = 10, |V| = 10, n € [0,5], and m = 1.

— Benchmark C: We first generate a word equation in following format:

XnaanXn,1 s bX1 = aXan,an,lb R Xlebaa

where X4, ..., X,, are variables and a and b are letters. Then, we replace
each b with one side of an individual equation generated by Benchmark
Al. Finally, we join the individual equations to form a conjunctive word
equation problem, with the maximum number of conjuncts capped at 100.
This method ensures that the resulting benchmark is highly non-linear.

The statistics of the evaluation data for each benchmark is shown in Table 3 in
the Appendix A.
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Table 1: Number of problems solved by different solvers and having extracted
MUS. The row Other solvers shows the number of solved problem in total by
Z3, Z3-Noodler, cvch, and Ostrich where v/, x, and oo denotes SAT, UNSAT,
and UKN respectively. The row DragonLi using MUS is the number of problems
solved by DragonLi when using MUS to rank word equations in the first iteration.

Type Linear Non-linear

Bench Al A2 B C

Total 60000 60000 60000 60000
DragonLi Solved 00 Solved 0 Solved 00 Solved 0

58141 1859 50610 9390 52056 7944 31 59969

Other v X v X v X VA

solvers 181 1678 667 4167 640 7304 383 58259
Have MUS 909 1024 2996 15875
DragonLi
using MUS 518 594 607 0

5.2 Training Data Collection

Table 1 outlines the training data collection process. We generate 60,000 prob-
lems per benchmark and check their satisfiability with DragonLi. For instance,
Benchmark A1l contains 1,859 unsolved problems, which are then passed to
solvers such as Z3, Z3-Noodler, cvch, and Ostrich. Together, these solvers identify
181 SAT and 1,678 UNSAT problems, with no single tool able to solve them all.

For UNSAT problems, we extract Minimal Unsatisfiable Subsets (MUSes)
using the fastest solver. This yields 909 problems with extractable MUSes, as
detailed in Appendix C. We rank word equations within each problem based on
their presence in the MUS and their length, then pass the ranked problems back
to DragonlLi. This allows DragonLi to prioritize word equations appearing in the
MUS, enabling it to solve 518 new problems. Problems in the row Have MUS are
transformed into a single labeled data (a conjunctive word equation). Problems
in the row DragonLi using MUS are transformed into multiple labeled data, each
representing a ranking process step on the shortest path to the solution.

The ranking heuristics effectiveness varies with problem benchmarks. For
Benchmarks Al and A2, 57% to 58% of problems with MUSes are solved. In
Benchmark B, the success rate drops to 20%, while for Benchmark C, the heuris-
tic has no effect, solving 0 additional problems. Consequently, no training data
or model was generated for Benchmark C.

5.3 Comparison with Other Solvers

The experimental settings, including hardware, GNN hyperparameters, and pa-
rameter configurations, are detailed in Appendix D.

Table 2 compares the results of three RANKEQS options, RE1, RE2, and
RES5 (corresponding to DragonLi Random-DragonLi, and GNN-DragonlLi), against
five solvers: Z3 [28], Z3-Noodler [13], cvch [9], Ostrich [12], and Woopje [14].
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Table 2: Number of problems, average solving time, and average split counts for
solvers across four benchmarks. The GNN model used in this table is trained
on Task 2. Columns “UNI”, “CS”, and “CU” indicate uniquely solved, common
SAT, and common UNSAT problems, respectively. The “-” denotes unavailable

data. Each benchmark consists of 1000 problems.

Number of solved problems

Average solving time

Bench| Solver (split number)
SAT|UNSAT|UNI|CS| CU | SAT |UNSAT| CS CU
. 5.6 6.5 5.0 5.7
DragonLi | 24955 | 0 (244.8) |(1085.3)| (94.4) |(126.3)
Random- 5.6 6.3 5.6 5.7
DragonLi | 22| 94 | © (198.8) | (932.6) | (137.6)|(180.5)
Al GNN- 24 961 0 13| 678 6.1 7.5 6.1 6.3
DragonLi (164.7) |(1974.8)| (96.4) | (60.5)
cved 24 952 1 0.5 0.6 0.1 0.3
73 17 960 0 8.7 0.4 1.1 0.1
Z3-Noodler| 22 939 2 5.7 0.3 4.8 0.1
Ostrich 17 931 0 15.0 5.5 8.0 4.7
Woorpje | 23 744 0 3.0 12.5 0.1 12.2
. 8.5 11.8 4.7
Dragonli | 59 1 824 1 0 (4233.4) [(1231.3)| (27.3) | ~
Random- 24.7 6.2 4.6
DragonLi 44 806 1 5| o [29779.6)] (210.9) | (27.3) )
A2 GNN- 59 336 4 8.4 11.6 5.9 )
DragonLi (1330.6) |(1074.1)| (27.3)
cved 67 142 15 0.6 56.0 0.1 -
73 8 870 10 1.1 0.6 0.1 -
7Z3-Noodler| 22 7 1 15.4 3.8 0.4 -
Ostrich 13 18 2 24.8 38.8 8.6 -
Woorpje | 0 0 0 |- - - - - -
. 4.9 5.2 4.9 5.3
DragonLi | 11| 805 | 0 (62.5) | (81.5) | (29.2) | (82.4)
Random- 5.0 5.8 5.0 5.2
DragonLi 10} 894 0 (58.7) |(295.2) |(27.25)] (73.1)
B GNN- 11 821 0 41294 6.5 6.8 6.5 6.8
DragonLi (65.1) | (70.0) |(28.25)| (60.2)
cved 12 915 0 0.1 0.6 0.1 0.7
73 11 859 3 0.1 0.2 0.1 0.1
73-Noodler| 24 911 1 4.9 0.4 1.3 0.4
Ostrich 12 917 2 6.9 3.7 3.3 4.2
Woorpje | 19 330 1 29.5 6.0 0.2 5.0
DragonLi | 2 0 01|-1 - (855;.15) - - -
Random- 5.0
DragonLi 2 0 0= - (85.5) ) ) )
C GNN-
DragonLi | ~ . T - - . -
cved 0 909 17 | - - 46.9 - 17.3
73 1 821 12 |1 0.8 1.7 0.8 0.1
Z3-Noodler| 7 657 4 111 1 0.2 94.1 0.1 1.0
Ostrich 0 61 0 |- - 7.2 - 27.1
Woorpje 3 62 01 65.0 28.4 0.2 223.1
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The primary metric is the number of solved problems. In Benchmark Al,
GNN-DragonLi achieves the best performance for both SAT and UNSAT prob-
lems. For Benchmark A2, GNN-DragonLi solves the most problems overall (895
problems solved), despite not being the best in either category individually.
GNN-DragonLi outperforms both DragonLi and Random-DragonLi, showing the
effectiveness of data-driven heuristics over fixed and random heuristics.

As problem non-linearity increases (in Benchmark B), some solvers outper-
form all DragonLi options. For highly non-linear problems (Benchmark C), Drag-
onLi solves almost no problems, regardless of the options. This is an effect entirely
orthogonal to the ranking problem, however: for non-linear equations, substitut-
ing variables that appear multiple times can increase equation length, resulting
in mostly infinite branches in the search tree. It then becomes more important
to implement additional criteria to detect unsatisfiable equations, for instance
in terms of word length or letter count (e.g., [23]), which are present in other
solvers. DragonLi deliberately does not include such optimizations, as we aim at
investigating the ranking problem in a controlled setting.

For commonly solved problems, the average solving time provides sufficient
data only for Benchmarks Al and B (678 and 294 problems, respectively). In
these cases, DragonLi shows no time advantage, partly due to its implementation
in Python. Re-implementing the algorithm in a more efficient language, such as
Rust [4], can yield over a 100x speedup for single word equation problems.

We also measure the average number of splits in solved problems to evaluate
ranking efficiency. GNN-DragonLi demonstrates fewer average splits compared
to other options, indicating higher problem-solving efficiency in Benchmarks A1l
and B. Our results can be summarized as follows:

1. For linear problems, all DragonLi ranking options perform competitively,
with GNN-DragonLi solving the highest number of problems.

2. For moderately non-linear problems (Benchmark B), DragonLi shows mod-
erate performance, but the ranking heuristic offers limited benefits to GNN-
DragonlLi, leading to reduced performance compared to other options.

3. For highly non-linear problems (Benchmark C), DragonlLi fails to solve most
problems due to limitations in its calculus.

4. The current implementation of DragonLi offers no time advantage for com-

monly solved problems, though significant improvements are achievable through

reimplementation.

Increasing training data for Benchmark A2 from 20,000 to 60,000 allowed
GNN-DragonLi to solve additional problems, suggesting that larger training sets
may enhance performance. An ablation study on alternative RANKEQS options is
provided in Appendix B. All benchmarks, evaluation results, and implementation
details, including hyperparameters, are available in our GitHub repository [3].

6 Related Work

Axel Thue [32] laid the theoretical foundation of word equations by studying
the combinatorics of words and sequences, providing an initial understanding of
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repetitive patterns. The first deterministic algorithm to solve word equations was
proposed by Makanin [26], but the complexity is non-elementary. Plandowski [31]
designed an algorithm that reduces the complexity to P-SPACE by using a form
of run-length encoding to represent strings and variables more compactly during
the solving process. Artur Je [21] proposed a nondeterministic algorithm runs in
O(n log n) space. Closer to our approach, recent research has focused on improv-
ing the practical efficiency of solving word equations. Perrin and Pin [30] offered
an automata-based technique that represents equations in terms of states and
transitions. This allows the automata to capture the behavior of strings satisfy-
ing the equation. Markus et al. [16] explored graph representations and graph
traversal methods to optimize the solving process for word equations, while Day
et al. [14] reformulated the word equation problem as a reachability problem
for nondeterministic finite automata, then encoded it as a propositional satis-
fiability problem that can be handled by SAT solvers. Day et al. [15] proposed
a transformation system that extends the Nielsen transformation [24] to work
with linear length constraints.

Deep learning [18] has been integrated with various formal verification tech-
niques, such as scheduling SMT solvers [19], loop invariant reasoning [35,36], and
guiding premise selection for Automated Theorem Provers (ATPs) [38]. Closely
related work in learning from Minimal Unsatisfiable Subsets (MUSes) includes
NeuroSAT [33,34], which utilizes GNNSs to predict the probability of variables ap-
pearing in unsat cores, guiding variable branching decisions for Conflict-Driven
Clause Learning (CDCL) [27]. Additionally, some recent works [7,25] explore
learning MUSes to guide CHC [20] solvers.

7 Conclusion and Future Work

In this work, we extend a Nielsen transformation based algorithm [6] to sup-
port the ranking of conjunctive word equations. We adapt a multi-classification
task to handle a variable number of inputs in three different ways in the rank-
ing task. The model is trained using MUSes to guide the algorithm in solving
UNSAT problems more efficiently. To capture global information in conjunctive
word equations, we propose a novel graph representation for word equations. Ad-
ditionally, we explore various options for integrating the trained model into the
algorithms. Experimental results show that, for linear benchmarks, our frame-
work outperforms the listed leading solvers. However, for non-linear problems,
its advantages diminish due to the inherent limitations of the inference rules. Our
framework not only offers a method for ranking word equations but also provides
a generalized approach that can be extended to a wide range of formula ranking
problems which plays a critical role is symbolic reasoning.

As future work, we aim to optimize GNN overhead, integrate GNN guidance
for both branching and ranking, and extend the solver to support length con-
straints and regular expressions for greater real-world applicability. Our frame-
work can be generalized to handle more decision processes in symbolic methods
that take symbolic expressions as input and output a decision choices.
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A Statistics of Evaluation Data

Table 3 presents the statistics of the evaluation data for each benchmark. For
each benchmark, we generate a total of 1000 problems for evaluation. The to-
tal variable and letter occurrence ratios are computed by counting the total
occurrences of variables and letters across all problems in a benchmark and di-
viding by the total number of terms. The column “Single equation” reports the
length, number of variables, number of letters, and the maximum occurrences of
a single variable for individual equations across all problems in the benchmarks.
The column “Problem level” measures the number of equations, number of vari-
ables, number of letters, and maximum occurrences of a single variable for each
conjunctive word equation in the benchmarks. For these columns, the metrics
reported are the minimum, maximum, average, and standard deviation values.

For our DragonLi and Z3, the difficulties of these benchmarks are proportional
to the total variable occurrence ratio and the length of the equations, as an
increase in these values leads to a decrease in the number of solved problems, as
shown in Table 2.

The number of equations in problems for Benchmark B is set to 50, differing
from other benchmarks. This is because its average maximum single variable
occurrence is high (53.5), meaning that, on average, a single variable appears
53.5 times across all equations in a problem. Intuitively, this can be interpreted
as a formula with more constraints. Consequently, when the number of equations
is set to 100, nearly all problems become UNSAT. When training a data-driven
model, the model tends to predict UNSAT to achieve optimal performance. To
mitigate this, the number of equations is reduced to 50.

B Ablation Study

Table 4 presents the number of solved SAT and UNSAT problems across different
training tasks and GNN options for implementing RANKEQS. Benchmark C is
excluded from evaluation because the ranking process has no significant impact
on performance when non-linearity is high, resulting in insufficient data to train
the GNN models.

The differences in the number of solved SAT problems across various con-
figurations are relatively small. This can be attributed to two primary reasons.
First, if each conjunct in a conjunctive formula is independent, the ordering
would not impact the outcome for SAT problems, as all conjuncts must inde-
pendently satisfy the formula. Second, conjuncts in conjunctive word equations
are usually not fully independent, as they often share variables. Consequently,
the sequence in which the conjuncts are processed influences the solving time
for SAT problems.

Conversely, for UNSAT problems, the sequence of the conjuncts affects per-
formance more regardless of the independence of individual conjuncts.

Therefore, the following discussion primarily focuses on the UNSAT prob-
lems.
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Table 3: Statistics of benchmarks in evaluation data. Min, max, avg, and std
denote minimum, maximum, average, and standard deviation value respectively.

Bench Al A2 B C
Total 1000 1000 1000 1000
Total variable and letter occurrence ratio
Varriable 0.135 0.130 0.375 0.416
Letter 0.864 0.869 0.625 0.583
Bench | A1 A2 B (@) Al A2 B C
Single equation Problem level
Length Number of equations
min 2 74 2 13 1 1 2 1
max 121 120 110 372 100 100 50 100
avg 38.7 103.2 43.4 155.0 51.4 50.9 26.8 51.8
std 24.3 7.2 20.6 82.0 28.8 28.8 14.0 28.6
Number of variables Number of variables
min 0 1 0 6 1 1 2 1
max 21 29 42 155 100 100 50 100
avg 5.2 13.4 16.3 64.5 51.4 50.9 26.8 51.8
std 3.0 4.6 9.7 34.1 28.8 28.8 14.0 28.6
Number of terminals Number of terminals
min 0 52 0 4 1 69 7 15
max 120 119 100 264 3734 9234 1796 10059
avg 33.4 89.8 27.2 90.5 1720.4 4575.1 729.0 4689.9
std 25.1 11.3 23.3 50.8 975.3 2593.4 401.2 2623.3
Max single variable occurrences Max single variable occurrences
min 0 1 0 3 1 1 0 4
max 1 1 10 14 34 29 109 14
avg 097 1 3.6 6.2 15,9 13.1 53.5 10.2
std 0.16 0 2.1 1.9 7.9 6.0 26.3 1.3
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In terms of the training tasks, the computational overhead follows the order
Task 2 > Task 1 > Task 3. The reasons are outlined as follows:

— Task 2: This task first computes the graph representation for each word
equation, Hg,, and then aggregates these into a global feature representa-
tion using Hg = > (Hg,,...,Hg, ). To compute the ranking score of each
conjunct in the conjunctive word equations, forward propagation must be
performed n times with the concatenated input Hg,||Hg for each GNN
layer.

— Task 1: This task requires forward propagation n times using the individual
graph representations Hg,, but it does not involve computing or concate-
nating the global feature representation H.

— Task 3: This task only requires a single forward propagation step using the
set of individual graph representations (Hg,, ..., Hg,)-

The numbers of solved UNSAT problems in columns SE3 and SE4 for Bench-
marks A2 and B provide supporting evidence. For Benchmark Al, it is not sen-
sitive to the overhead of GNN calls because the overall number of iterations
required to solve the problems is low.

In terms of GNN options, SE3 involves the most of calls to the GNN model.
It is generally outperformed by other options across all tasks and benchmarks
due to its overhead.

SEA4 involves a random process. Its performance is below average for Bench-
marks Al and A2 because it disrupts the predictions of GNNs. For Benchmark
B, it achieves the best performance for Tasks 1 and 3. This is because Bench-
mark B is non-linear; repeatedly applying inference rules to the same non-linear
word equation leads to an increase in length and potentially non-termination.
The random process helps to escape such situations. However, for Task 3, the
overhead of calling the GNN diminishes its advantage.

SE5 has the least overhead from model calls. For Benchmarks A1l and A2, it
outperforms most other options. For Benchmark B, it achieves average perfor-
mance.

SE6 and SE7 maintain high performance across all benchmarks but do not
consistently outperform SES5.

C Statistics of MUSes
Table 5 presents the statistics of equations in the MUS for each benchmark, cor-

responding to the row “Have MUS” in Table 1. Each conjunctive word equation
is associated with one MUS.

D Experimental Settings

To better investigate the influence of conjuncts order at a conjunctive word
equations, we fixed the branch order for all inference rules. Additionally, we



22 P. Abdulla et al.

Table 4: Number of solved problems for different GNN options and training tasks.
The bold numbers, along with their corresponding GNN options and tasks, are

referenced in the rows labeled “GNN” in Table 2. The columns “3” ,“4”, ..., “7”
corresponds to RE3, RE4, ..., RE7 in Section 4.4 respectively.
Bench Al [ A2 B
RANKEQS GNN options

Tasks 3145 |6 |73 4|5 ]6|7|3[4|5b |67
1 SAT 232324 (24(24(34|42|59 |59(59|10|10| 11 |11 |11
UNSAT[945(938| 954 [955|955(404 (521|837 |829(824|776|876| 815 |805(|833
9 SAT |24|23(24|24[24[49|48|59[59(59| 9 [10|11| 9 |11
UNSAT[946(945|961[955|954|300(468 836 (833826 78 |256|821|767|829
3 SAT 2423|244 |24(24[48 (38|59 [59(59| 9 |10 11 |11]11
UNSAT|[936(940|951 [955|953|825(779| 816 |832(825|884|892| 792 |805|829

Table 5: Statistics of MUSes.

Bench Al A2 B C
Total 909 1024 2996 15875
Total variable and letter occurrence ratio
Varriable 0.124 0.139 0.489 0.408
Letter 0.875 0.861 0.511 0.592
Bench | A1 A2 B C Al A2 B C
Single equation Problem level
Length Number of equations
min 2 76 11 12 2 1 1 1
max 117 120 114 354 8 8 8 7
avg 40.6 101.7 40.1 66.2 2.2 33 26 2.0
std 23.5 74 17.1 60.8 0.7 1.0 1.3 0.5
Number of variables Number of variables
min 1 2 10 6 2 10 10 7
max 16 26 41 148 49 117 173 525
avg 5.1 14.2 19.6 27.0 11.3 46.3 50.4 54.7
std 2.6 4.6 6.4 25.5 5.4 17.3 26.1 56.3
Number of terminals Number of terminals
min 1 57 1 4 4 69 1 4
max 111 118 99 248 318 710 362 758
avg 35.6 87.5 20.5 39.2 79.2 258.6 52.6 79.3
std 23.8 11.4 17.5 36.8 39.0 90.2 40.1 78.7
Max single variable occurrences Max single variable occurrences
min 1 1 1 3 1 1 2 3
max 1 1 10 14 1 1 10 14
avg 1 1 4.4 4.3 1 1 5.4 4.6
std 0 0 1.5 1.5 0 0 1.4 1.6
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fixed the inference rule to the prefix version, meaning it always simplifies the
word equation starting from the leftmost term. We chose a hidden layer of size
128 for all neural networks, and used a two message-passing layer (i.e. t = 2
in Equation 2) for the GNN. Each problem in the benchmarks is evaluated on
a computer equipped with two Intel Xeon E5 2630 v4 at 2.20 GHz/core and
128GB memory. The GNNs are trained on NVIDIA A100 GPUs. We measured
the number of solved problems and the average solving time (in seconds), with
timeout of 300 seconds for each proof attempt.

E Calculus for Word Equations [6]

The calculus for word equations proposed by [6] comprises a set of inference
rules. Each inference rule is expressed in the following form:

P
Name

[cond;]
Gy

[cond,,]
Cn

Here, Name is the name of the rule, P is the premise, and C;s are the conclusions.
Each cond; is a substitution that is applied implicitly to the corresponding con-
clusion Cj, describing the case handled by that particular branch. In our case, P
is a conjunctive word equation and each Cj is either a conjunctive word equation
or a final state, SAT or UNSAT.

To introduce the inference rules, we use distinct letters a, b € X and variables
X,Y € I', while u and v denote sequences of letters and variables.

Rules Ry, Ra, R, and R4 (Figure 3a) define how to conclude SAT, and how
to handle equations in which one side is empty. In R3, note that the substitu-
tion X +— € is applied to the conclusion ¢. Rules Rs and Rg (Figure 3b) refer
to cases in which each word starts with a letter. The rules simplify the leftmost
equation, either by removing the first letter, if it is identical on both sides (Rj5),
or by concluding that the equation is UNSAT (Rg). Rule R7 (Figure 3¢) manages
cases where one side begins with a letter and the other one with a variable. The
rule introduces two branches, since the variable must either denote the empty
string €, or its value must start with the same letter as the right-hand side. Rule
Rg and Ry (Figure 3d) handles the case in which both sides of an equation start
with a variable, implying that either both variables have the same value or the
value of one is included in the value of the other.

F  Workflow

The workflow of our framework is illustrated in Figure 4. For a benchmark, we
begin by randomly splitting the dataset into training and evaluation subsets.
During the training phase, we first input the word equation problems into the
split algorithm ranking option RE1 to obtain their satisfiabilities and separate
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True R e=€cN¢ RSM R a-u=ecA¢
SAT ¢ [X = €] * T UNSAT
¢
with X € I"and a € X.
(a) Simplification Rule
a-u=a-vAg¢ a-u=b-vA¢

R A
° u=vA¢ Re UNSAT

with a,b two different Terminals from X.

(b) Terminal-Terminal Rule

X -u=a-vAo
[X — €] [X —a X
u=a-vA¢p | X -u=vAe

Ry

with X’ a fresh element of I.

(c) Variable-Terminal Rules

X -u=Y - vA¢
[X = Y] X =Y Y]
u=vA¢ Y - u=vA¢

Ry Y = X -X]

u=X-vA¢

X-u=X -vAo

Ro u=vA¢

with X #Y and X', Y’ fresh elements of I'.
(d) Variable-Variable Rule

Fig. 3: Inference rules of the proof system for word equations

them into SAT, UNSAT, and UNKNOWN sets. For the SAT and UNSAT sets,
we discard them since our algorithm already know how to solve them. For the
UNKNOWN set, the problems are passed to other solvers, such as z3 and cvcb. If
the solver concludes UNSAT, we systematically identify Minimal Unsatisfiable
Subsets (MUSes) of conjunctive word equations by exhaustively checking the
satisfiability of subsets, starting with individual equations and stopping upon
finding the first MUS. We use the MUSes to rank and sort conjunctive word
equations unsolvable by the split algorithm, then reprocess the sorted equations
with it. This allows the split algorithm to solve some problems and construct
proof trees. Then, we can extract the labeled data from both and-or tree and
MUSes. The way of label them can be found in Section 4.

Next, we convert the labeled conjunctive word equations from textual to
graph format, enabling the model with GNN layers to process them. The model
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Fig.4: The workflow diagram for the training and prediction phase.

takes a rank point (i.e., a conjunction of word equations) as input and outputs
corresponding scores that indicate the priority of the conjuncts.

In the prediction phase, during the step where inference rules are applied,
the trained model ranks and sorts the conjuncts. The equation with the highest
score is then selected for apply the branching inference rules.
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