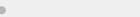
Boosting Constrained Horn Solving by Unsat Core Learning

Parosh Aziz Abdulla¹, Chencheng Liang¹, Philipp Rümmer^{1,2}


¹Uppsala University, Sweden ²University of Regensburg, Germany

April 07, HCVS 2024

2023	uns	safe	saf	fe
2023	✓	!	V	!
LoAT ABMC	73	-	31	
oAT ABMC _{block}	72	0	75	12
Golem TPA	63	4	88	3
LoAT BMC	60	0	36	0
Z3 BMC	58	_	21	_
LoAT ADCL	56	1	0	-
Golem BMC	55	100	20	-
Spacer	52	5	156	51
Eldarica	29	0	121	17

Background

- Counterexample-guided abstraction refinement (CEGAR) based
 Constrained Horn Clauses (CHCs) technique
- Symbolic execution based technique
- Which CHC is processed first in a set of CHCs is important

Background

Background

- Which CHC is processed first in a set of CHCs is important
- Examples of prioritizing CHCs
 - The fewer dependencies the higher priority
 - Solving simpler CHCs outside of cycles may reduce complexity within the cycles or overall problem space
 - Domain specific heuristics: in program verification, clauses representing base cases in recursive functions might be simpler to solve.

00000

000

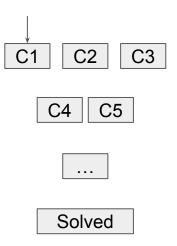
Motivation

- Target: data-driving method to prioritize CHCs (deep learning)
- Challenge: hard to form training data

C1 C2 C3

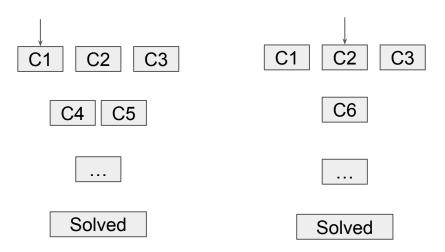
 $\bullet \bullet \bullet$

Framework


00000

Background

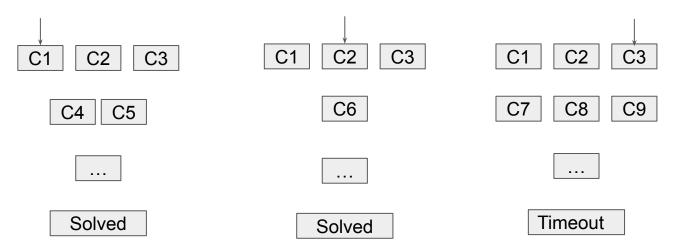
Motivation


- Target: data-driving method to prioritize CHCs (deep learning)
- Challenge: hard to form training data

Motivation

Background

- Target: data-driving method to prioritize CHCs (deep learning)
- Challenge: hard to form training data



000

••••

Motivation

- Target: data-driving method to prioritize CHCs (deep learning)
- Challenge: hard to form training data

0000

Motivation

- Target: data-driving method to prioritize CHCs
- Challenge: hard to form training data
- Idea: focus on learning a particular concept
 - Minimal Unsatisfiable Subsets (MUSes)

••••

Minimal Unsatisfiable Subsets (MUSes) of CHCs

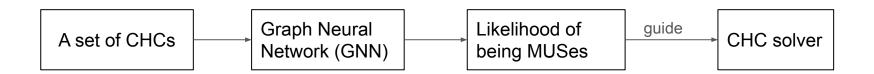
$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x-1 \end{array}$$

$$[4] \ L_3(x) \qquad \leftarrow L_1(x) \land x \leq 0$$

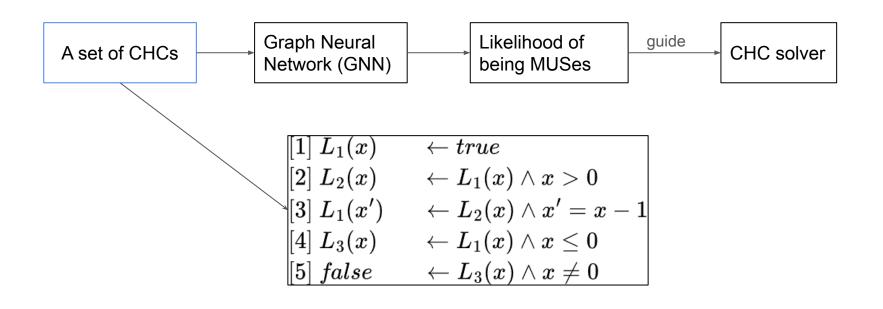
[5]
$$false \leftarrow L_3(x) \land x \neq 0$$

Background

Minimal Unsatisfiable Subsets (MUSes) of CHCs

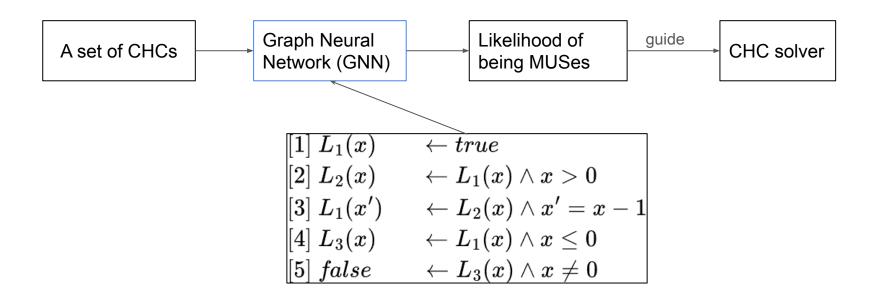

$$\begin{array}{lll} [1] \ L_1(x) & \leftarrow true \\ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \\ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \\ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \\ [5] \ false & \leftarrow L_3(x) \wedge x \neq 0 \end{array}$$
 {[1], [4], [5]} is the only MUS

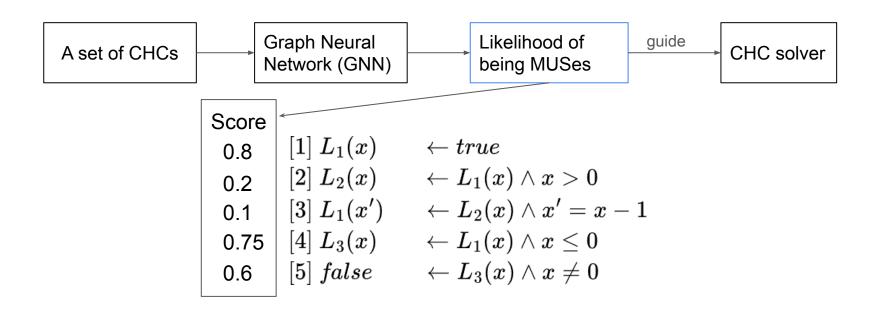
Framework


0000

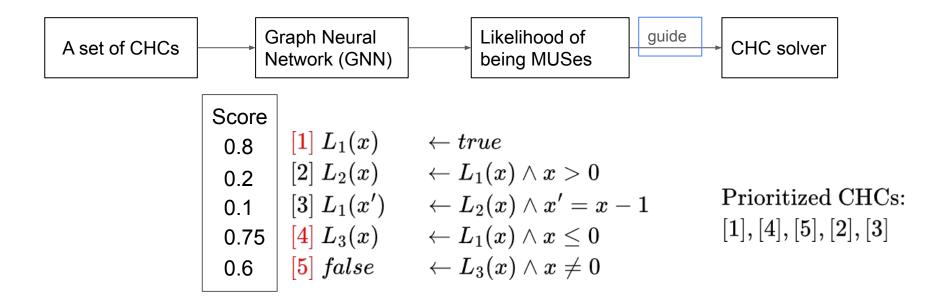
Property: If any subset of the set of CHCs is UNSAT, then the entire set of CHCs is also UNSAT.

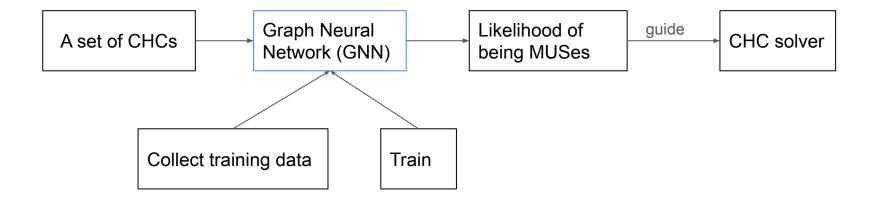
Deep Learning-Based Framework (prediction phase)

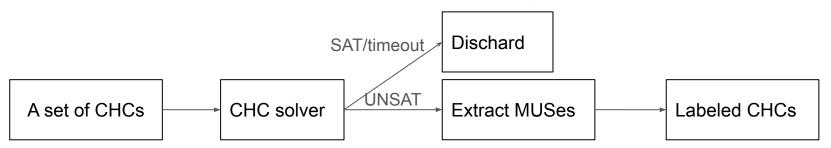


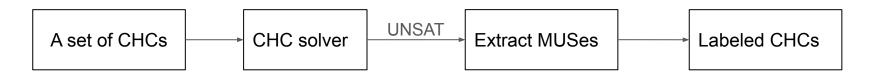


 $\bullet \bullet \bullet$


00


••••


000


Deep Learning-Based Framework

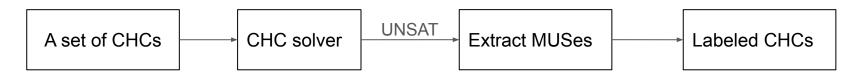
Training phase (collect training data)

Training phase (collect training data)

Clauses

$$[1] L_1(x) \leftarrow true$$

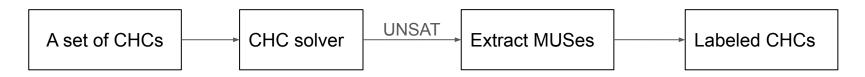
$$[2] L_2(x) \leftarrow L_1(x) \wedge x > 0$$


$$[3] \ L_1(x') \qquad \leftarrow L_2(x) \wedge x' = x-1$$

$$[4] L_3(x) \leftarrow L_1(x) \land x \leq 0$$

[5]
$$false \leftarrow L_3(x) \land x \neq 0$$

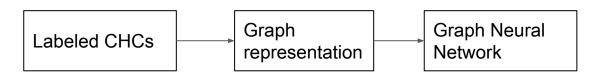
000


Training phase (collect training data)

Label	\mathbf{C}	lauses
1	$[1] \; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[oldsymbol{5}] \ false$	$\leftarrow L_3(x) \land x \neq 0$

0000

Training phase (collect training data)

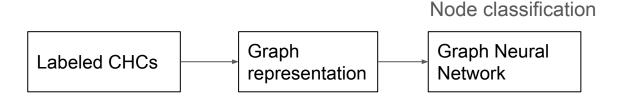

Label	\mathbf{C}^{1}	lauses
1	$[1] L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	[5] false	$\leftarrow L_3(x) \land x \neq 0$

When there are multiple MUSes

- Union
- Intersection
- Single

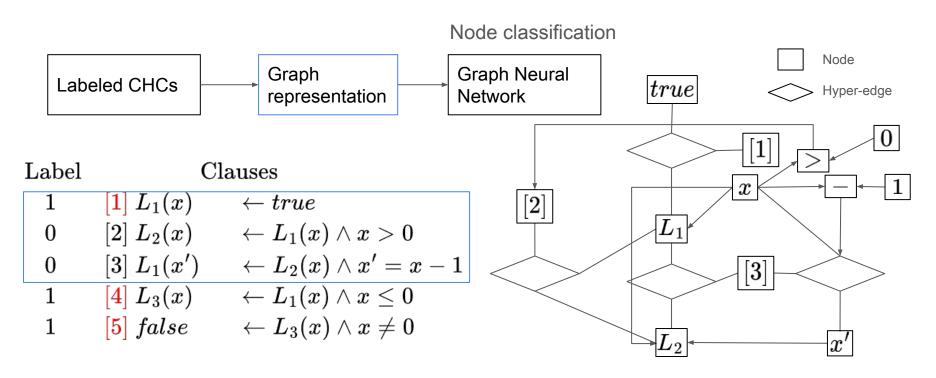
000

Training phase (train a model)

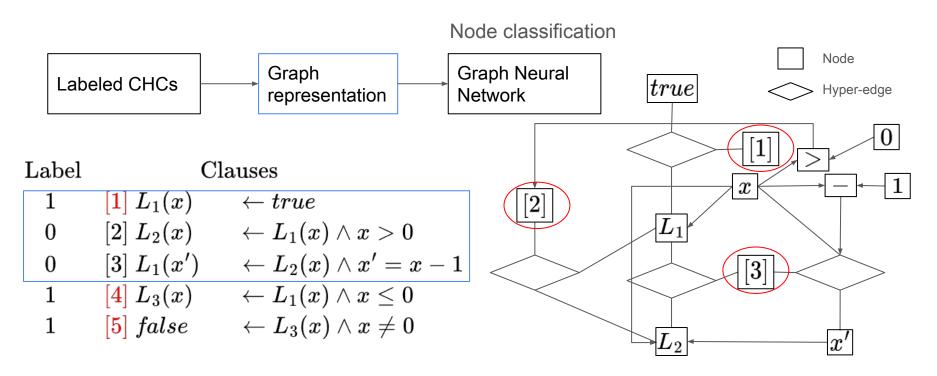

Label	Cl	auses
1	$\boldsymbol{[1]}\; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$\boldsymbol{[4]}\;L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[5] \ false$	$\leftarrow L_3(x) \land x \neq 0$

00000

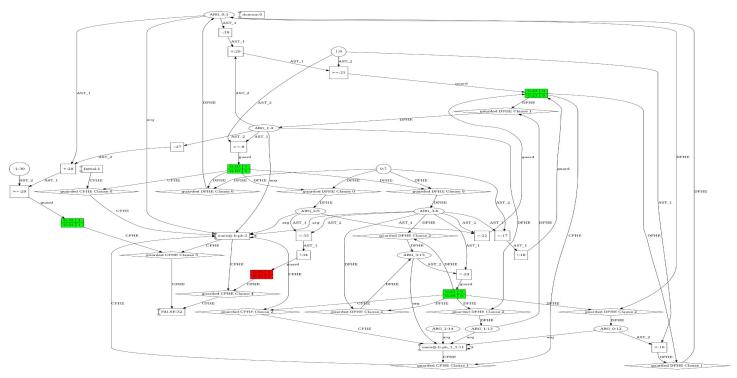
000



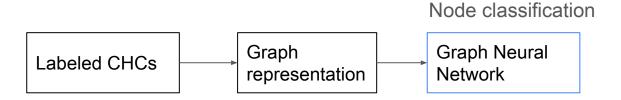
Label	\mathbf{C}^{1}	lauses
1	$[1] \; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[{f 5}] \; false$	$\leftarrow L_3(x) \land x \neq 0$


000

Training phase (train a model)


000

Training phase (train a model)



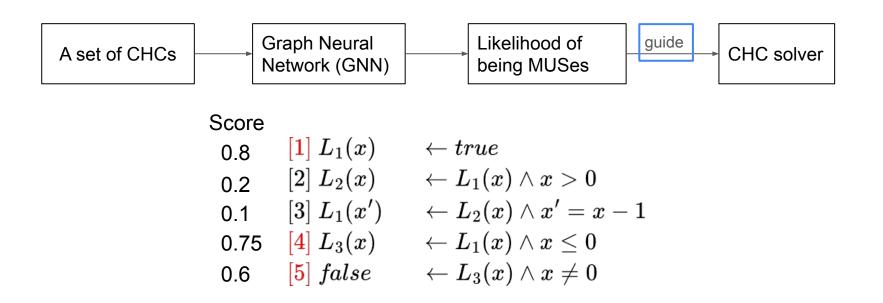
• •

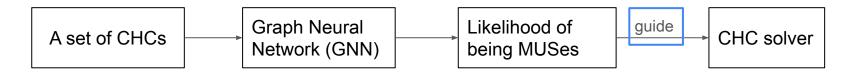
Represent CHCs by graphs

Training phase (train a model)

00

Training phase (train a model)


Node classification Graph **Graph Neural** Labeled CHCs representation Network


- Relational Hypergraph Neural Network [1]
 - Can handle different types of hyperedges

[1] Chencheng Liang, Philipp Rümmer, and Marc Brockschmidt. Exploring Representation of Horn Clauses using GNNs

....

 $\bullet \bullet \bullet$

- Use scores alone
- Combine with original prioritizing scores
 - Add/subtract normalized or ranked scores with coefficient
 - Randomly shifting between MUS and original score

Experimental results

Background

00

Benchmarks from CHC-COMP

Linear LIA problems									
8705									
Benchmarks for training Holdout set									
7834 (90)	871 ((10%)							
UNSAT	SAT	T/O	Eval.	N/A					
1585	4004	2245	383	488					
Train Valid N/A			A22 2-3	•					
782 87 716]								

Experimental results

Background

00

Benchmarks from CHC-COMP

Linear LIA proble	ms	Non-linear LIA problems					
8705		8425					
Benchmarks for training	Holdout set	Benchmarks for training Holdout se					
7834 (90%)	871 (10%)	7579 (90%	846 (10%)				
UNSAT SAT T/O	Eval. N/A	UNSAT	SAT T/O	Eval. N/A			
1585 4004 2245	383 488	3315	4010 254	488 358			
Train Valid N/A		Train Valid N/A	od. X				
782 87 716		1617 180 1518					

Experimental results

Algorithms of CHC solver (Eldarica)

- Counterexample-guided abstraction refinement (CEGAR)
- Symbolic execution (SymEx)

Background

00000

Experimental results (Improved percentage)

Benchmark	MUS	Best ranking function (improvement in %)						
Algorithm	data set	Number of Solved Problems			Average Time			
80	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT
	Union	R-Plus	R-Plus	R-Minus	R-Plus	S-Plus	S-Minus	Rank
Linear	(0)	(1.4%)	(2.4%)	(1.0%)	(1.3%)	(19.1%)	(46.5%)	(31.1%)
CEGAR	Single	Rank	R-Plus	Rank	R-Plus	S-Plus	R-Minus	Rank
	(3)	(3.6%)	(4.0%)	(8.2%)	(1.9%)	(26.6%)	(57.9%)	(36.3%)
	Intersection	R-Plus	S-Plus	R-Plus	R-Plus	S-Plus	R-Minus	S-Plus
	(4)	(4.1%)	(0.8%)	(9.3%)	(3.1%)	(27.6%)	(45.0%)	(0.0%)
	Union	Two-Q	S-Plus*	Random	Two-Q	R-Minus	R-Minus	S-Plus
Linear	(4)	(1.0%)	(0.0%)	(2.0%)	(0.9%)	(12.7%)	(30.2%)	(26.5%)
SymEx	Single	S-Minus*	S-Plus*	Random	Random	S-Plus	Random	S-Plus
	(3)	(0.5%)	(0.0%)	(2.0%)	(0.8%)	(12.9%)	(28.4%)	(17.6%)
	Intersection	S-Plus*	S-Plus*	S-Plus*	S-Plus	Score	Random	R-Plus
	(5)	(1.0%)	(0.0%)	(2.0%)	(1.3%)	(9.5%)	(28.4%)	(35.8%)

Background

00000

•••

Experimental results (Improved percentage)

Benchmark	MUS		Best rar	iking fund	ction (im	provemen	nt in %)	
Algorithm	data set	Number of Solved Problems			Average Time			
	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT
-	Union	R-Plus	R-Plus	R-Minus	R-Plus	S-Plus	S-Minus	Rank
Linear	(0)	(1.4%)	(2.4%)	(1.0%)	(1.3%)	(19.1%)	(46.5%)	(31.1%)
CEGAR	Single	Rank	R-Plus	Rank	R-Plus	S-Plus	R-Minus	Rank
	(3)	(3.6%)	(4.0%)	(8.2%)	(1.9%)	(26.6%)	(57.9%)	(36.3%)
	Intersection	R-Plus	S-Plus	R-Plus	R-Plus	S-Plus	R-Minus	S-Plus
	(4)	(4.1%)	(0.8%)	(9.3%)	(3.1%)	(27.6%)	(45.0%)	(0.0%)
	Union	Two-Q	S-Plus*	Random	Two-Q	R-Minus	R-Minus	S-Plus
Linear	(4)	(1.0%)	(0.0%)	(2.0%)	(0.9%)	(12.7%)	(30.2%)	(26.5%)
SymEx	Single	S-Minus*	S-Plus*	Random	Random	S-Plus	Random	S-Plus
	(3)	(0.5%)	(0.0%)	(2.0%)	(0.8%)	(12.9%)	(28.4%)	(17.6%)
	Intersection	S-Plus*	S-Plus*	S-Plus*	S-Plus	Score	Random	R-Plus
	(5)	(1.0%)	(0.0%)	(2.0%)	(1.3%)	(9.5%)	(28.4%)	(35.8%)

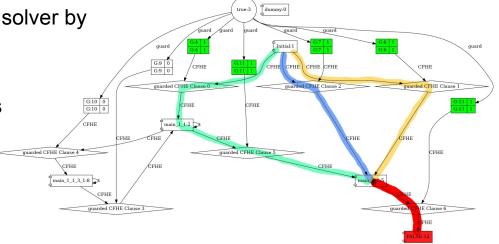
Experimental results (Improved percentage)

Background

Benchmark	MUS	Best ranking function (improvement in %)						
Algorithm	data set	Number of Solved Problems			Average Time			
	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT
Non-	Union	S-Plus	S-Plus	S-Plus*	S-Plus	R-Minus	Rank	S-Plus
Linear	(7)	(0.5%)	(0.8%)	(0.0%)	(7.1%)	(20.8%)	(53.5%)	(19.4%)
CEGAR	Single	R-Plus	R-Plus	R-Plus*	R-Plus	S-Plus	R-Minus	R-Minus
CEGAN	(1)	(0.2%)	(0.4%)	(0.0%)	(6.6%)	(18.4%)	(52.8%)	(14.2%)
	Intersection	R-Plus*	S-Plus	S-Plus*	R-Plus	R-Plus	Rank	S-Plus
	(1)	(0.0%)	(0.5%)	(0.0%)	(5.9%)	(20.3%)	(45.8%)	(16.8%)
Non-	Union	Two-Q	S-Minus*	Random	Two-Q	R-Minus	Score	R-Plus
Linear	(6)	(6.1%)	(1.6%)	(12.3%)	(13.3%)	(7.3%)	(5.1%)	(19.9%)
SymEx	Single	Two-Q	Score	Two-Q	Two-Q	Rank	R-Minus	Two-Q
	(3)	(6.1%)	(1.6%)	(12.9%)	(12.4%)	(-2.2%)	(0.2%)	(11.2%)
	Intersection	Two-Q	S-Plus	Two-Q	Two-Q	S-Minus	Two-Q	S-Plus
	(3)	(6.1%)	(1.6%)	(12.9%)	(12.7%)	(0.6%)	(1.7%)	(5.4%)

Experimental results (Improved percentage)

Background


Benchmark	MUS		Best ranking function (improvement in %)							
Algorithm	data set		Number of Solved Problems			Average Time				
	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT		
Non-	Union (7)	S-Plus (0.5%)	S-Plus (0.8%)	S-Plus* (0.0%)	S-Plus (7.1%)	R-Minus (20.8%)	Rank (53.5%)	S-Plus (19.4%)		
Linear CEGAR	Single (1)	R-Plus (0.2%)	R-Plus (0.4%)	R-Plus* (0.0%)	R-Plus (6.6%)	S-Plus (18.4%)	R-Minus (52.8%)	R-Minus (14.2%)		
	Intersection (1)	R-Plus* (0.0%)	S-Plus (0.5%)	S-Plus* (0.0%)	R-Plus (5.9%)	R-Plus (20.3%)	Rank (45.8%)	S-Plus (16.8%)		
Non- Linear	Union (6)	Two-Q (6.1%)	S-Minus* (1.6%)	(12.3%)	$ ext{Two-Q} \ (13.3\%)$	(7.3%)	Score (5.1%)	R-Plus (19.9%)		
SymEx	Single (3)	Two-Q (6.1%)	Score (1.6%)	Two-Q (12.9%)	Two-Q (12.4%)	Rank (-2.2%)	R-Minus (0.2%)	Two-Q (11.2%)		
	Intersection (3)	Two-Q (6.1%)	S-Plus (1.6%)	Two-Q $(12.9%)$	Two-Q (12.7%)	S-Minus (0.6%)	Two-Q (1.7%)	S-Plus (5.4%)		

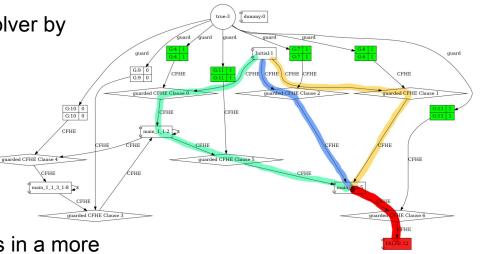
Conclusion

 GNN can be used to speed up CHC solver by predicting MUSes

GNN learns simple patterns

It is difficult to learn intricate patterns

Conclusion


 GNN can be used to speed up CHC solver by predicting MUSes

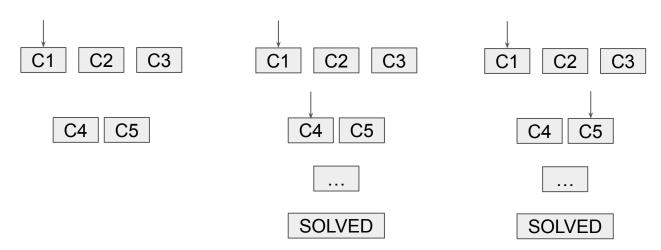
GNN learns simple patterns

It is difficult to learn intricate patterns

Future work

- Integrating the GNN with the algorithms in a more interactive manner
- Add attention mechanism when train the GNN models

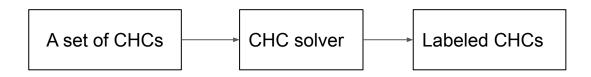
Thank you!


Q&A

00000

000

Motivation


- Target: data-driving method to prioritizing CHCs
- Challenge: search space for collecting training data is too big

00000

Deep Learning-Based Framework (extract training data)

⊿abel	Cl	auses
1	$\boldsymbol{[1]}\; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$\boldsymbol{[4]}\;L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[5] \ false$	$\leftarrow L_3(x) \land x \neq 0$

When there are multiple MUSes

- Union
- Intersection
- Single

Constraint Horn Clauses (CHCs)

A CHC is a formula in the format

$$\forall V. L[X] \leftarrow L_1[X_1] \land \ldots \land L_n[X_n] \land \varphi$$

Where

V are variables,

 X_i are terms over V,

 L, L_1, \ldots, L_n are n-ary relation symbols,

 $L_i[X_i]$ is an atom of relation symbol to the terms,

 φ is a constraint in the background theory T.

A set of CHCs (example)

A CHC is a formula in the format

$$egin{array}{lll} orall V.L[X] \leftarrow L_1[X_1] \wedge \ldots \wedge L_n[X_n] \wedge arphi \ L_1(x) & \leftarrow true \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ L_3(x) & \leftarrow L_1(x) \wedge x <= 0 \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$

A program and its Constraint Horn Clauses (CHCs)

0000

00

Minimal Unsatisfiable Subsets (MUSes) of CHCs

$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$

•

••••

MUSes of CHCs

$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$

{[1], [4], [5]} is the only MUSes

00

•

••••

MUSes of CHCs

$$[1] L_1(x) \leftarrow true$$

$$[2] L_2(x) \leftarrow L_1(x) \wedge x > 0$$

$$[3] \ L_1(x') \qquad \leftarrow L_2(x) \land x' = x-1$$

$$[4] L_3(x) \leftarrow L_1(x) \land x \leq 0$$

[5]
$$false \leftarrow L_3(x) \land x \neq 0$$

{[1], [4], [5]} is the only MUSes

- Algorithms
 - Counterexample-guided abstraction refinement (CEGAR)
 - Symbolic execution (Symex)

•

MUSes of CHCs

Score

0.8 [1]
$$L_1(x) \leftarrow true$$

0.2 [2]
$$L_2(x) \leftarrow L_1(x) \land x > 0$$

0.1 [3]
$$L_1(x') \leftarrow L_2(x) \wedge x' = x-1$$

0.75 [4]
$$L_3(x) \leftarrow L_1(x) \land x \leq 0$$

0.6 [5]
$$false \leftarrow L_3(x) \land x \neq 0$$

{[1], [4], [5]} is the only MUSes

- Algorithms
 - Counterexample-guided abstraction refinement (CEGAR)
 - Symbolic execution (Symex)

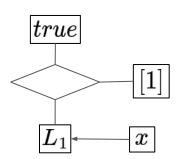
MUSHyperNet Framework

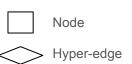
- Working pipeline
 - Extract train data
 - Represent CHCs by graphs
 - Train Graph Neural Network (GNN) models
 - Guide the algorithms by predicted MUSes of CHCs

Extract train data

CHCs

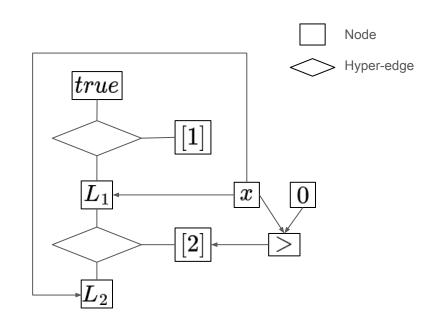
- Binary classification label
 - Union
 - Intersection
 - Single

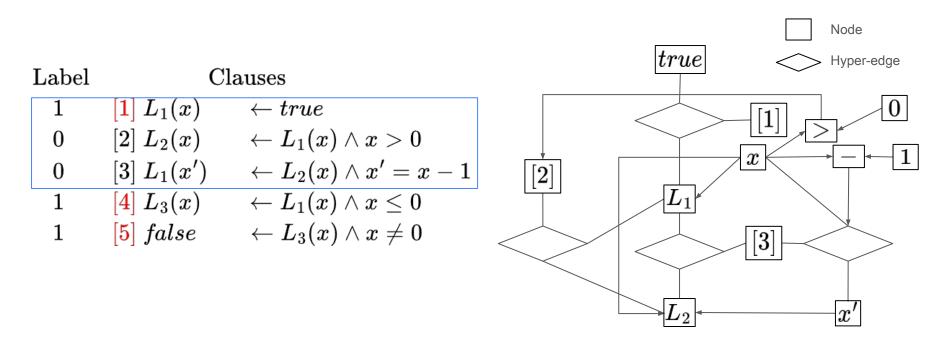

Label	\mathbf{C}^{1}	lauses
1	[1] $L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	[5] <i>false</i>	$\leftarrow L_3(x) \land x \neq 0$


Represent CHCs by graphs

Label

Clauses

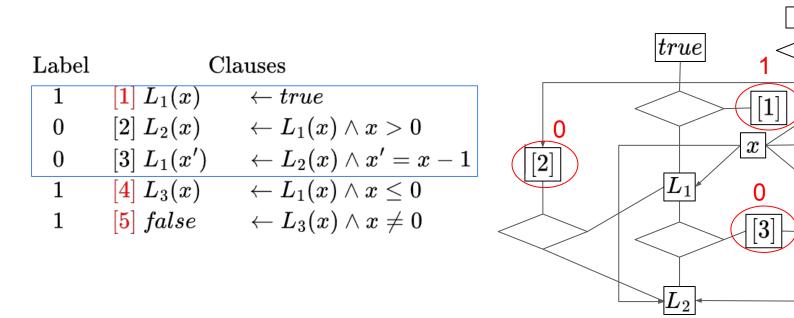

1	[1] $L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$m{[4]}\ L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[{f 5}] \; false$	$\leftarrow L_3(x) \land x \neq 0$

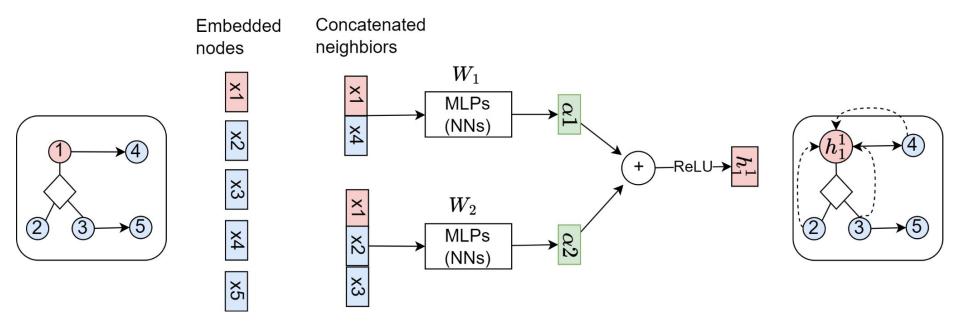

Represent CHCs by graphs

Label	Cl	auses
1	[1] $L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	[3] $L_1(x')$	$\leftarrow L_2(x) \wedge x' = x-1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[5] \ false$	$\leftarrow L_3(x) \land x \neq 0$

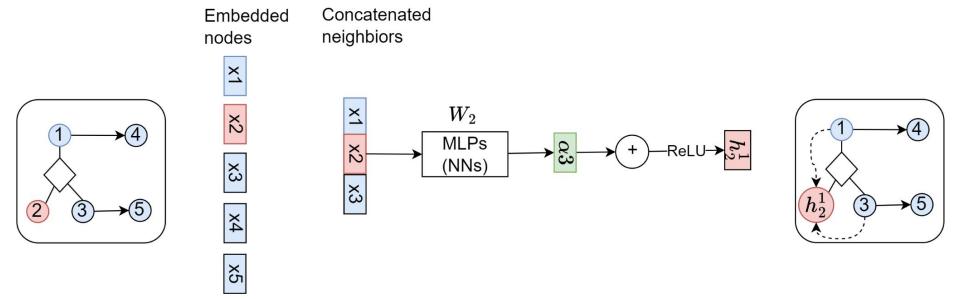
••••

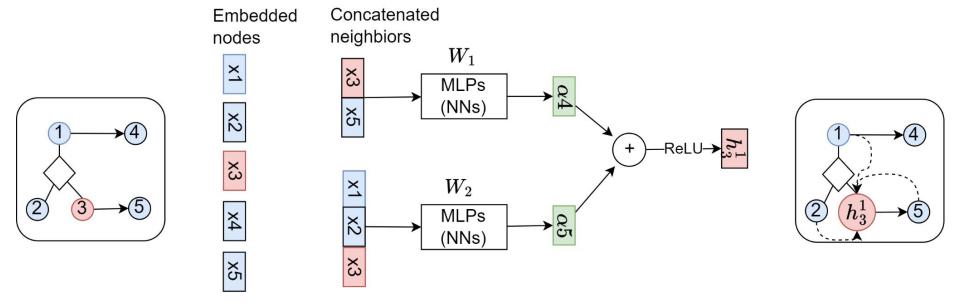
Represent CHCs by graphs

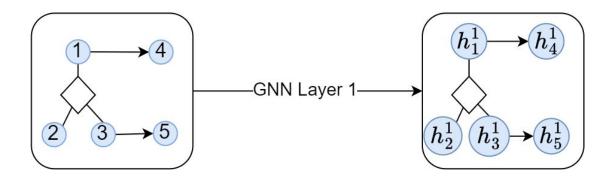

Node

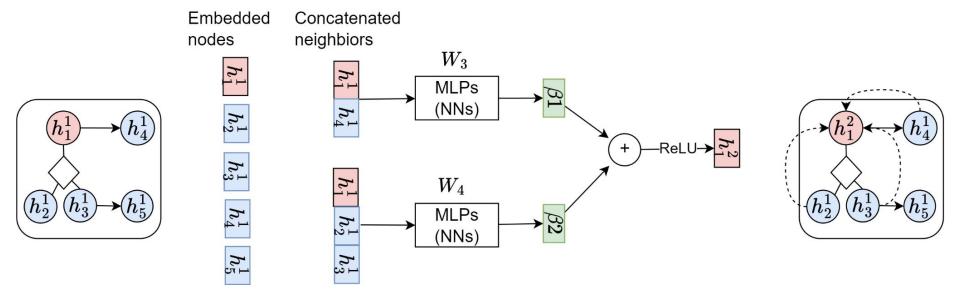

x'

Hyper-edge

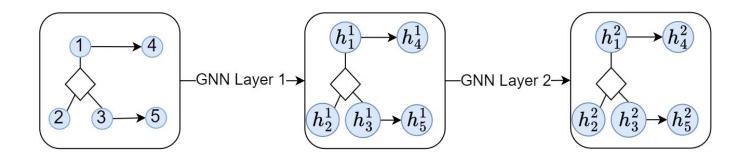

.


Represent CHCs by graphs





• •



• •

CHCs

$\circ \circ \circ \circ \circ$

- Prioritize CHCs by using predicted scores of CHCs
 - Use scores alone
 - Combine with original prioritizing scores
 - Add/subtract normalized or ranked scores with coefficient
 - Randomly shift to MUS and original score

Algorithm	Name
- C-2	Fixed
87	Random
CEGAR	Score
0-	Rank
9.	R-Plus
-	S-Plus
	R-Minus
	S-Minus
100	Fixed
9-	Random
SymEx -	Score
Sylliex	Rank
	R-Plus
	S-Plus
	R-Minus
	S-Minus
1	Two-queue

Experimental results

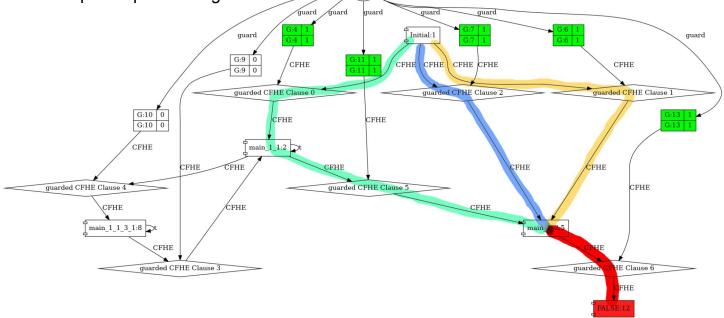
Benchmarks from CHC-COMP

Linear LIA proble	ms	Non-linear LIA problems			
8705		8425			
Benchmarks for training	Holdout set	Benchmarks for	Holdout set		
7834 (90%)	871 (10%)	7579 (90%	846 (10%)		
UNSAT SAT T/O	Eval. N/A	UNSAT	SAT T/O	Eval. N/A	
1585 4004 2245	383 488	3315	4010 254	488 358	
Train Valid N/A		Train Valid N/A			
782 87 716		1617 180 1518			

Experimental results (Improved percentage)

Benchmark	MUS		Best ranking function (improvement i					
Algorithm	data set	Number of Solved Problems			Average Time			
80	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT
	Union	R-Plus	R-Plus	R-Minus	R-Plus	S-Plus	S-Minus	Rank
Linear	(0)	(1.4%)	(2.4%)	(1.0%)	(1.3%)	(19.1%)	(46.5%)	(31.1%)
CEGAR	Single	Rank	R-Plus	Rank	R-Plus	S-Plus	R-Minus	Rank
and the same of	(3)	(3.6%)	(4.0%)	(8.2%)	(1.9%)	(26.6%)	(57.9%)	(36.3%)
	Intersection	R-Plus	S-Plus	R-Plus	R-Plus	S-Plus	R-Minus	S-Plus
9%	(4)	(4.1%)	(0.8%)	(9.3%)	(3.1%)	(27.6%)	(45.0%)	(0.0%)
	Union	Two-Q	S-Plus*	Random	Two-Q	R-Minus	R-Minus	S-Plus
Linear	(4)	(1.0%)	(0.0%)	(2.0%)	(0.9%)	(12.7%)	(30.2%)	(26.5%)
SymEx	Single	S-Minus*	S-Plus*	Random	Random	S-Plus	Random	S-Plus
	(3)	(0.5%)	(0.0%)	(2.0%)	(0.8%)	(12.9%)	(28.4%)	(17.6%)
	Intersection	S-Plus*	S-Plus*	S-Plus*	S-Plus	Score	Random	R-Plus
	(5)	(1.0%)	(0.0%)	(2.0%)	(1.3%)	(9.5%)	(28.4%)	(35.8%)

CHCs

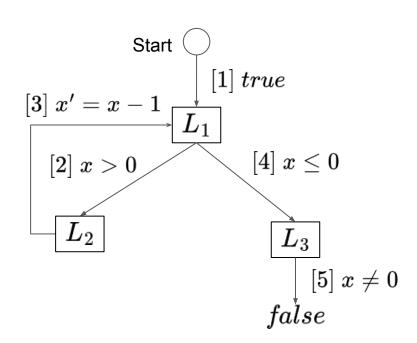

Experimental results (Improved percentage)

Benchmark	data set	Best ranking fundaments			ction (in	(improvement in %) Average Time			
Algorithm	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT	
Non-	Union (7)	S-Plus (0.5%)	S-Plus (0.8%)	S-Plus* (0.0%)	S-Plus (7.1%)	R-Minus (20.8%)	Rank (53.5%)	S-Plus (19.4%)	
Linear CEGAR	Single (1)	R-Plus (0.2%)	R-Plus (0.4%)	R-Plus* (0.0%)	R-Plus (6.6%)	S-Plus (18.4%)	R-Minus (52.8%)	R-Minus (14.2%)	
	Intersection (1)	R-Plus* (0.0%)	S-Plus (0.5%)	S-Plus* (0.0%)	R-Plus (5.9%)	R-Plus (20.3%)	$\frac{\text{Rank}}{(45.8\%)}$	S-Plus (16.8%)	
Non- Linear	Union (6)	Two-Q (6.1%)	S-Minus* (1.6%)	Random (12.3%)	$\frac{\text{Two-Q}}{(13.3\%)}$	R-Minus (7.3%)	Score (5.1%)	R-Plus (19.9%)	
SymEx	Single (3)	Two-Q (6.1%)	$\begin{array}{c} \textbf{Score} \\ \textbf{(1.6\%)} \end{array}$	Two-Q (12.9%)	Two-Q (12.4%)	Rank (-2.2%)	R-Minus (0.2%)	Two-Q (11.2%)	
	Intersection (3)	Two-Q (6.1%)	S-Plus (1.6%)	Two-Q (12.9%)	Two-Q (12.7%)	S-Minus (0.6%)	Two-Q (1.7%)	S-Plus (5.4%)	

Conclusion

GNN can be used lead the speed up of solving CHCs

Future works

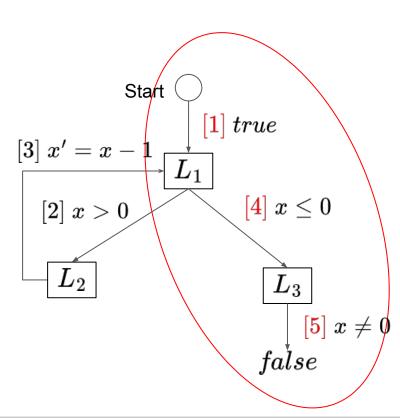


dummy:0

00

Visualize CHCs with dependency graph

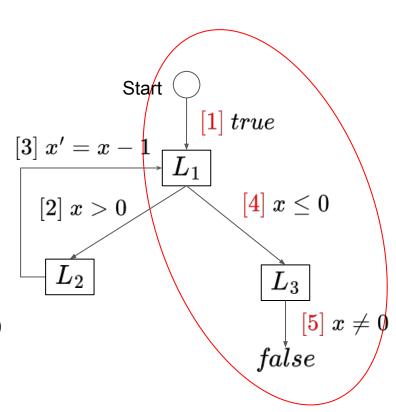
$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$


• •

MUSes of CHCs

$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$

{[1], [4], [5]} is the only MUSes



.

MUSes of CHCs

$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$

- Algorithms
 - Counterexample-guided abstraction refinement (CEGAR)
 - Symbolic execution (Symex)

.

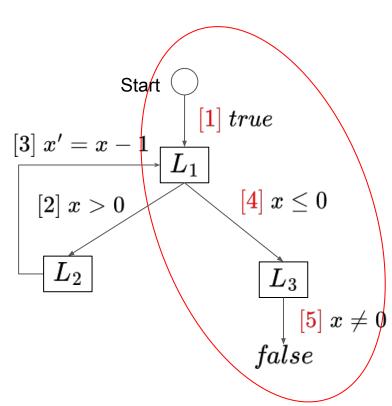
•••••

MUSes of CHCs

Score

0.8 [1]
$$L_1(x) \leftarrow true$$

0.2 [2]
$$L_2(x) \leftarrow L_1(x) \land x > 0$$

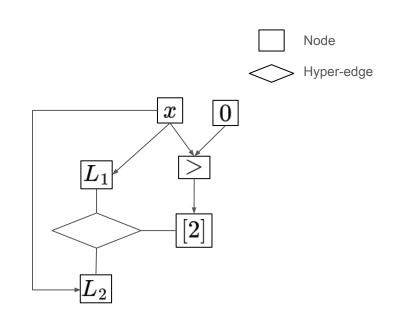

0.1
$$[3]$$
 $L_1(x')$ $\leftarrow L_2(x) \wedge x' = x-1$

0.75 [4]
$$L_3(x) \leftarrow L_1(x) \land x \leq 0$$

0.6 [5]
$$false \leftarrow L_3(x) \land x \neq 0$$

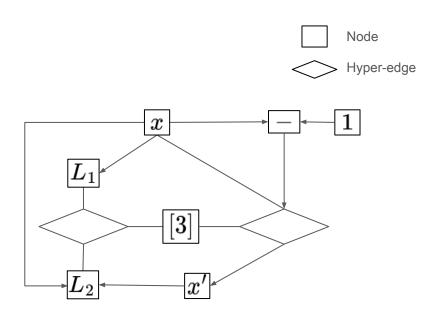
Algorithms

- Counterexample-guided abstraction refinement (CEGAR)
- Symbolic execution (Symex)



00000

Represent CHCs by graphs

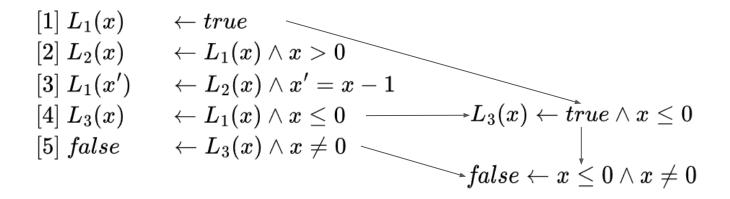

Label	Cla	auses
1	$\boldsymbol{[1]}\; L_1(x)$	$\leftarrow true$
0	$[2] L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3]\ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$[4] \ L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[{f 5}] \; false$	$\leftarrow L_3(x) \land x \neq 0$

Represent CHCs by graphs

00

Label	\mathbf{C}	lauses
1	$\boldsymbol{[1]}\; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] L_1(x')$	$\leftarrow L_2(x) \wedge x' = x-1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[5] \ false$	$\leftarrow L_3(x) \land x \neq 0$

Experimental results


Non Linear	Function Default Random	Total 432 425	SAT 250	UNSAT	All	Commo	0.45	*****
Linear	Random	425	250			Commo	n SAT	UNSAT
Linear				182	131.12	42.05	43.34	40.28
Linear		2	243	182	143.42	34.27	34.84	38.75
	923 223	(-1.6%)	(-2.8%)	(0.0%)	(-9.4%)	(-11.1%)	(19.6%)	(3.8%)
	D Dlace	432	250	182	122.29	31.74	28.59	37.82
CEGAR	R-Plus	(0.0%)	(0.0%)	(0.0%)	(6.7%)	(17.8%)	(34.0%)	(6.1%)
	R-Minus	417	240	177	154.07	26.20	21.46	32.51
	R-Minus	(-3.5%)	(-4.0%)	(-2.7%)	(-17.5%)	(20.8%)	(50.5%)	(19.3%)
	S-Plus	434	252	182	121.75	34.64	35.97	39.10
	5-Plus	(0.5%)	(0.8%)	(0.0%)	(7.1%)	(13.1%)	(17.0%)	(2.9%)
	S-Minus	421	242	179	149.02	31.76	26.33	38.95
	5-Willius	(-2.5%)	(-3.2%)	(-1.6%)	(-13.7%)	(-2.0%)	(39.2%)	(3.3%)
	Portfolio	435	253	182	113.49	28.24	30.57	31.75
	Fortiono	(0.7%)	(1.2%)	(0.0%)	(13.4%)	(29.1%)	(29.5%)	(21.2%)
	Default	342	187	155	343.82	28.39	29.05	27.59
	Random	362	188	174	301.90	32.67	36.24	41.83
Non		(5.8%)	(0.5%)	(12.3%)	(12.2%)	(-15.1%)	(-24.8%)	(-51.6%)
Linear	R-Plus	339	190	149	357.18	27.88	47.71	22.10
SymEx		(-0.9%)	(1.6%)	(-3.9%)	(-3.9%)	(0.3%)	(-64.2%)	(19.9%)
	R-Minus	361	189	172	299.86	26.35	37.68	27.98
	10-Willius	(5.6%)	(1.1%)	(11.0%)	(12.8%)	(7.3%)	(-29.7%)	(-1.4%)
	S-Plus	340	189	151	352.84	29.04	41.41	24.54
	5-1 143	(-0.6%)	(1.1%)	(-2.6%)	(-2.6%)	(-0.3%)	(-42.5%)	(11.1%)
	S-Minus	362	190	172	303.65	28.62	44.11	37.95
	5-Milius	(5.8%)	(1.6%)	(11.0%)	(11.7%)	(-0.4%)	(-51.8%)	(-37.5%)
	Two quoue	363	189	174	297.93	30.15	41.14	32.51
	Two-queue	(6.1%)	(1.1%)	(12.3%)	(13.3%)	(-6.2%)	(-41.6%)	(-17.8%)
	Portfolio	366	191	175	288.85	22.29	42.42	26.75
	1 01 110110	(7.0%)	(2.1%)	(12.9%)	(16.0%)	(21.4%)	(-46.0%)	(3.0%)

Experimental results

 At least one setting has improvement

	Ranking Function	Number of Solved Problems (improvement %)			s Average Time (improvement %)			
Benchmark Algorithm		Total	SAT	UNSAT	All	Comm	on SAT	UNSAT
	Default	222	125	97	519.38	25.77	38.97	8.77
Linear CEGAR	Random	221	124	97	523.58	27.49	37.05	15.85
		(-0.5%)	(-0.8%)	(0.0%)	(-0.8%)	(-29.5%)	(4.9%)	(-80.7%)
	R-Plus	225	128	97	512.41	21.65	42.89	11.99
		(1.4%)	(2.4%)	(0.0%)	(1.3%)	(16.0%)	(-10.1%)	(-36.7%)
	R-Minus	220	122	98	526.08	18.02	30.93	21.60
		(-0.9%)	(-2.4%)	(1.0%)	(-1.3%)	(-24.4%)	(20.6%)	(-146.3%)
	S-Plus	222	125	97	517.43	20.92	34.13	7.32
		(0.0%)	(0.0%)	(0.0%)	(0.4%)	(19.1%)	(12.4%)	(16.5%)
	S-Minus	219	122	97	522.97	12.56	20.86	9.81
		(-1.4%)	(-2.4%)	(0.0%)	(-0.7%)	(2.4%)	(46.5%)	(-11.9%)
	Portfolio	229	130	99	503.16	18.28	45.67	19.94
		(3.2%)	(4.0%)	(2.1%)	(3.1%)	(29.1%)	(-17.2%)	(-127.4%)
Linear SymEx	Default	200	101	99	590.68	33.16	55.42	10.44
	Random	201	100	101	586.12	30.08	39.69	20.95
		(0.5%)	(-1.0%)	(2.0%)	(0.8%)	(-8.5%)	(28.4%)	(-100.7%)
	R-Plus	192	101	91	617.60	38.59	52.87	21.99
		(-4.0%)	(0.0%)	(-8.1%)	(-4.6%)	(-10.9%)	(4.6%)	(-110.6%)
	R-Minus	200	100	100	586.24	24.67	38.69	10.60
		(0.0%)	(-1.0%)	(1.0%)	(0.8%)	(12.7%)	(30.2%)	(-1.5%)
	S-Plus	198	101	97	595.02	30.22	50.97	7.67
		(-1.0%)	(0.0%)	(-2.0%)	(-0.7%)	(11.6%)	(8.0%)	(26.5%)
	S-Minus	201	101	100	586.35	30.64	50.57	10.65
		(0.5%)	(0.0%)	(1.0%)	(0.7%)	(7.8%)	(8.8%)	(-2.0%)
	Two-queue	202	101	101	585.58	35.11	49.94	20.14
		(1.0%)	(0.0%)	(2.0%)	(0.9%)	(-5.9%)	(9.9%)	(-92.9%)
	Portfolio	206	101	105	569.1	25.79	44.58	10.16
		(3%)	(0.0%)	(6.1%)	(3.7%)	(22.2%)	(19.6%)	(2.6%)

Minimal Unsatisfiable Subsets (MUSes) of CHCs

Background

Solving Constrained Horn Clauses (CHCs)

A CHC is a formula in the format

$$\forall V. L[X] \leftarrow L_1[X_1] \land \ldots \land L_n[X_n] \land \varphi$$

Where

V are variables,

 X_i are terms over V,

 L, L_1, \ldots, L_n are n-ary relation symbols,

 $L_i[X_i]$ is an atom of relation symbol to the terms,

 φ is a constraint in the background theory T.