Guiding Constraint Horn Clauses Solving using Graph Neural Networks

Parosh Aziz Abdulla¹, Chencheng Liang¹, Philipp Rümmer^{1,2}

¹Uppsala University, Sweden ²University of Regensburg, Germany

May 07 2024

- Verify neural networks
- Apply deep learning to improve verification

- Verify neural networks
- Apply deep learning to improve verification (formal methods)

- Verify neural networks.
- Apply deep learning to improve verification (examples)
 - Premise selection for Automatic Theorem Provers (ATPs)
 - Variable branching decision for SAT solvers
 - Instance selection in SMT solving
 - Algorithm selection for software verification

- Verify neural networks.
- Apply deep learning to improve verification.
 - Decision making problems (classification task)

- Apply deep learning to improve verification (formal methods)
 - Learn?

- Apply deep learning to improve recommendation system
 - Learn relations

- Apply deep learning to improve language translation
 - Learn semantics

- Apply deep learning to improve protein structure prediction
 - Learn isomorphism

- Apply deep learning to improve verification (formal methods)
 - Learn?

- Apply deep learning to improve verification (formal methods)
 - Learn reasoning

000

Background

••••

Program verification

Background

00000

Program verification (example)

```
int x = _ ;
while (x > 0){
     x--;
}
if (x != 0){ error(); }
```

 Whether exists a path that leads to the error state

- Program verification
- Encode program verification to Constraint Horn Clauses (CHCs)
 - Solving the CHCs is solving the program verification problem

Constraint Horn Clauses (CHCs)

A CHC is a formula in the format

$$\forall V. L[X] \leftarrow L_1[X_1] \land \ldots \land L_n[X_n] \land \varphi$$

Where

V are variables,

 X_i are terms over V,

 L, L_1, \ldots, L_n are n-ary relation symbols,

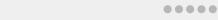
 $L_i[X_i]$ is an atom of relation symbol to the terms,

 φ is a constraint in the background theory T.

00000

A set of CHCs (example)

A CHC is a formula in the format


$$egin{aligned} orall V.L[X] &\leftarrow L_1[X_1] \wedge \ldots \wedge L_n[X_n] \wedge arphi \ L_1(x) &\leftarrow true \ L_2(x) &\leftarrow L_1(x) \wedge x > 0 \ L_1(x') &\leftarrow L_2(x) \wedge x' = x - 1 \ L_3(x) &\leftarrow L_1(x) \wedge x <= 0 \ false &\leftarrow L_3(x) \wedge x
eq 0 \end{aligned}$$

Background

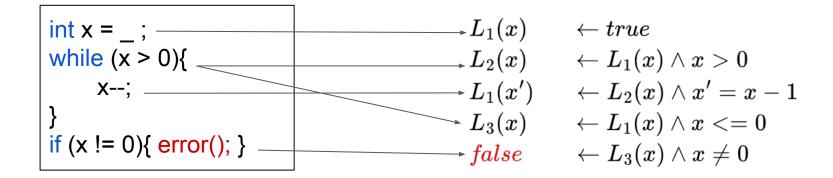
- Program verification
- Constraint Horn Clauses (CHCs)
- Encode program verification to CHCs

Experimental results

 $\bullet \bullet \bullet$

A program and its CHCs (example)

```
\begin{array}{lll} & & & \downarrow L_1(x) & \leftarrow true \\ & & \text{while (x > 0)} \{ & & \downarrow L_2(x) & \leftarrow L_1(x) \land x > 0 \\ & & \downarrow L_2(x) & \leftarrow L_1(x) \land x > 0 \\ & & \downarrow L_1(x') & \leftarrow L_2(x) \land x' = x - 1 \\ & & \downarrow L_3(x) & \leftarrow L_1(x) \land x <= 0 \\ & & \text{if (x != 0)} \{ \text{ error(); } \} & & & false & \leftarrow L_3(x) \land x \neq 0 \\ \end{array}
```


- Program verification
- Constraint Horn Clauses (CHCs)
- Encode program verification to CHCs
- Solving CHCs

Experimental results

 $\bullet \bullet \bullet$

0000

A program and its CHCs (example)

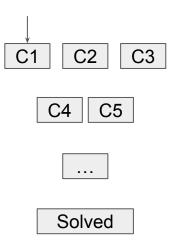
A path to error

Cannot find interpretations to atoms to make the set of CHCs true

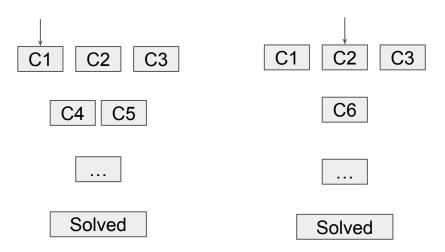
- Techniques for solving CHCs
 - Counterexample-guided abstraction refinement (CEGAR)
 - Symbolic execution based technique

- Which CHC is processed first in a set of CHCs is important
 - General ranking problem

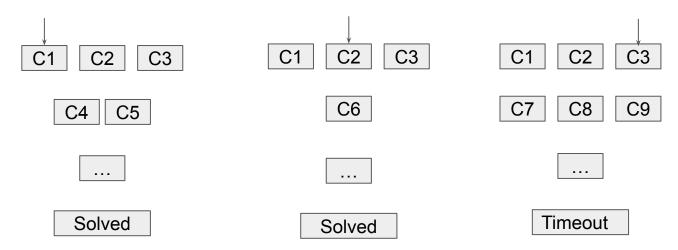
- CHC selection
 - Premise selection for Automatic Theorem Provers (ATPs)
 - Variable branching decision for SAT solvers
 - Instance selection in SMT solving
- Classification task with various input and output


- Examples of prioritizing (ranking) CHCs
 - The fewer dependencies the higher priority
 - Solving simpler CHCs outside of cycles may reduce complexity within the cycles or overall problem space
 - Domain specific heuristics: in program verification, clauses representing base cases in recursive functions might be simpler to solve.

- Target: data-driving method to prioritize CHCs (deep learning)
- Challenge: hard to form training data


C1 C2 C3

Background


- Target: data-driving method to prioritize CHCs (deep learning)
- Challenge: hard to form training data

- Target: data-driving method to prioritize CHCs (deep learning)
- Challenge: hard to form training data

- Target: data-driving method to prioritize CHCs (deep learning)
- Challenge: hard to form training data

- Target: data-driving method to prioritize CHCs
- Challenge: hard to form training data
- Idea: focus on learning a particular concept
 - Minimal Unsatisfiable Subsets (MUSes)

Experimental results

Minimal Unsatisfiable Subsets (MUSes) of CHCs

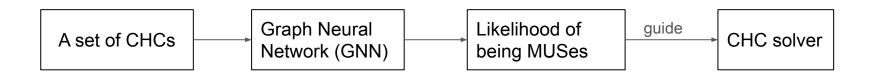
$$[1] L_1(x) \leftarrow true$$

$$[2] \ L_2(x) \qquad \leftarrow L_1(x) \wedge x > 0$$

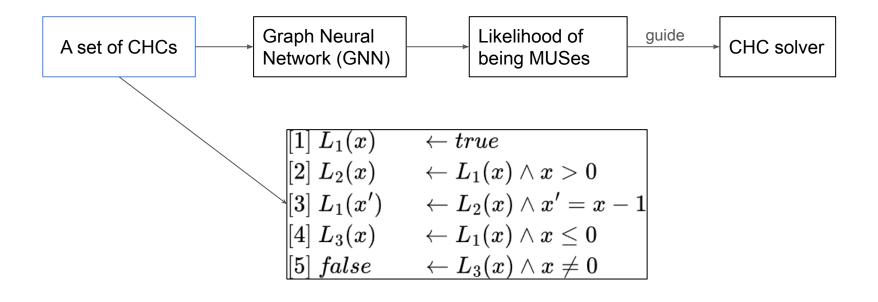
$$[3] \ L_1(x') \qquad \leftarrow L_2(x) \wedge x' = x-1$$

$$[4] \ L_3(x) \qquad \leftarrow L_1(x) \land x \leq 0$$

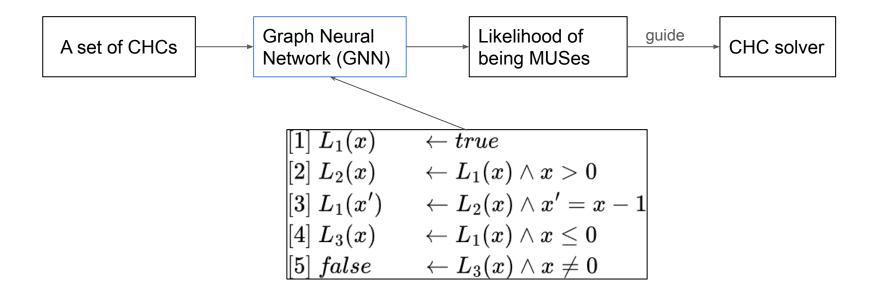
[5]
$$false \leftarrow L_3(x) \land x \neq 0$$

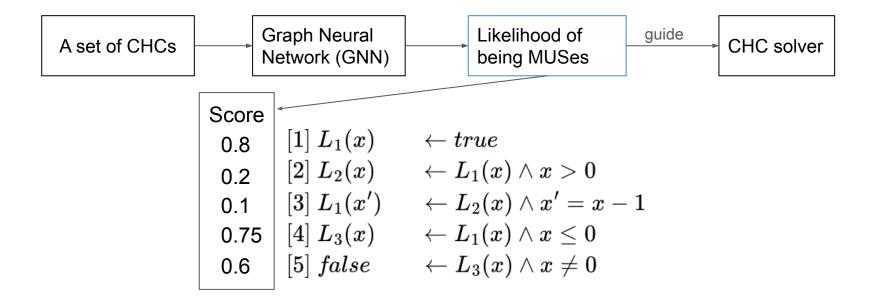

••••

Minimal Unsatisfiable Subsets (MUSes) of CHCs

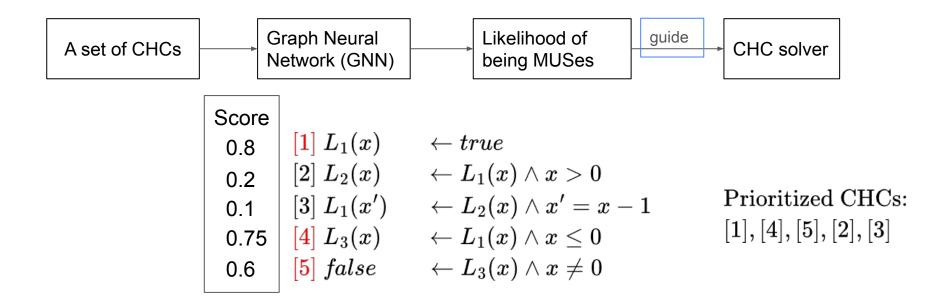

$$\begin{array}{lll} [1] \ L_1(x) & \leftarrow true \\ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \\ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \\ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \\ [5] \ false & \leftarrow L_3(x) \wedge x \neq 0 \end{array}$$
 {[1], [4], [5]} is the only MUS

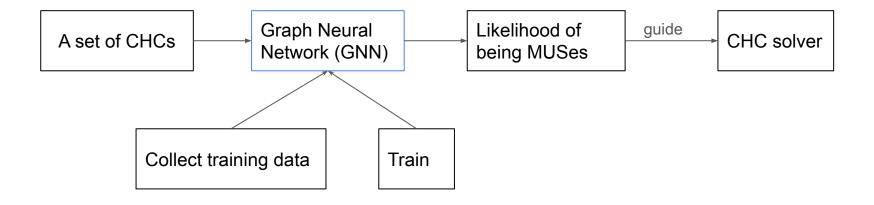
Property: If any subset of the set of CHCs is UNSAT, then the entire set of CHCs is also UNSAT.


Deep Learning-Based Framework (prediction phase)

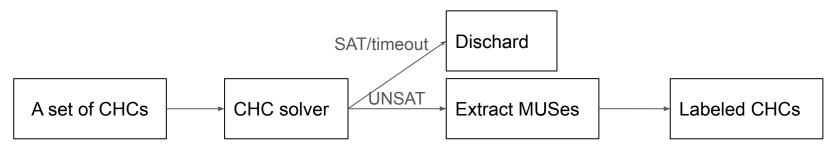

Prediction phase

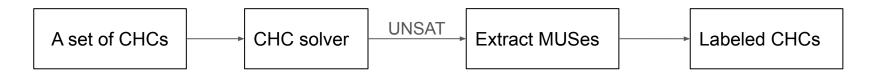
Prediction phase


Prediction phase


0000

000



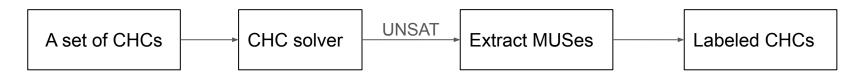

Deep Learning-Based Framework

Training phase (collect training data)

Training phase (collect training data)

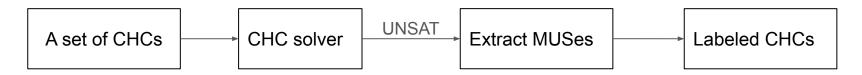
Clauses

$$[1] L_1(x) \leftarrow true$$


$$[2] \ L_2(x) \qquad \leftarrow L_1(x) \land x > 0$$

$$[3] \ L_1(x') \qquad \leftarrow L_2(x) \wedge x' = x-1$$

$$[4] L_3(x) \leftarrow L_1(x) \land x \leq 0$$


[5]
$$false \leftarrow L_3(x) \land x \neq 0$$

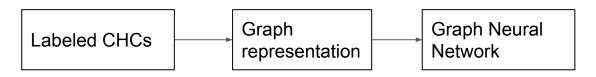
Training phase (collect training data)

Label	Cl	lauses
1	$\boldsymbol{[1]}\; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$[\![4]\!] L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[5] \ false$	$\leftarrow L_3(x) \land x \neq 0$

Training phase (collect training data)

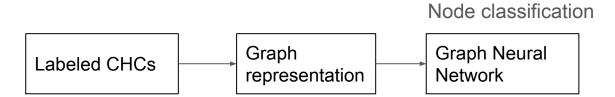
Label	Cla	auses
1	$\boldsymbol{[1]}\; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$[4] \ L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[5] \ false$	$\leftarrow L_3(x) \land x \neq 0$

When there are multiple MUSes


000

- Union
- Intersection
- Single

00000


Training phase (train a model)

Label	\mathbf{C}^{2}	lauses
1	$[1] \ L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[5] \ false$	$\leftarrow L_3(x) \land x \neq 0$

000

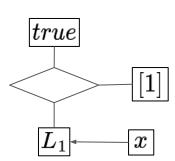
Training phase (train a model)

Label	\mathbf{C}^{1}	lauses
1	$[1] \; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[{f 5}] \; false$	$\leftarrow L_3(x) \land x \neq 0$

000

Training phase (train a model)

Label	Cla	uses
1	$\boldsymbol{[1]}\; L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$\boldsymbol{[4]}\;L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[{f 5}] \; false$	$\leftarrow L_3(x) \land x \neq 0$

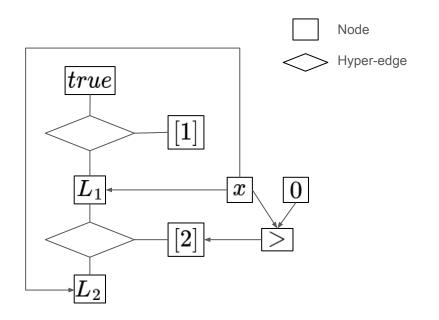

000

Represent CHCs by graph (example)

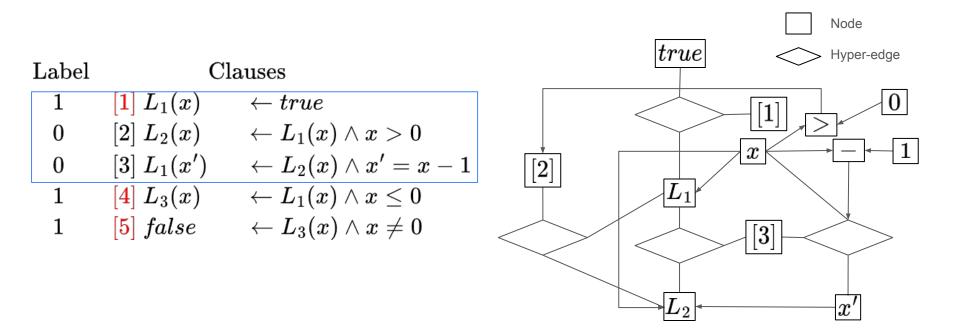
Label

Clauses

1	[1] $L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$\boldsymbol{[4]}\;L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[{f 5}] \; false$	$\leftarrow L_3(x) \land x \neq 0$

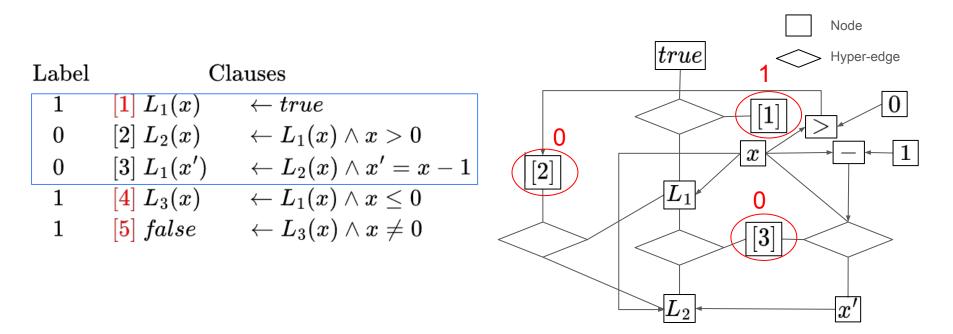


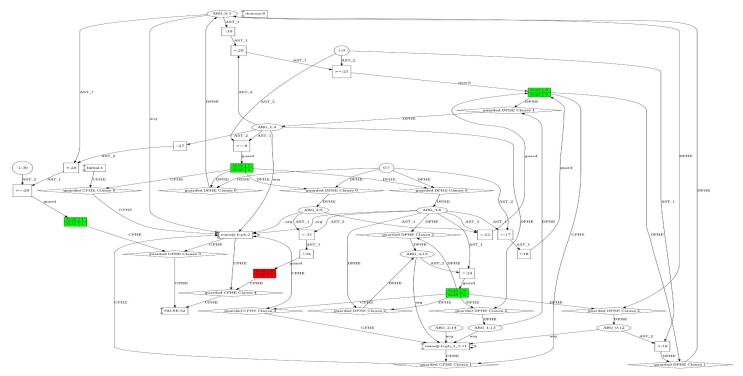
00000


Represent CHCs by graph (example)

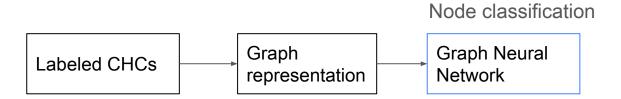
Label	Cl	auses
1	$[1] L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x-1$
1	$\boldsymbol{[4]}\;L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	[5] false	$\leftarrow L_3(x) \land x \neq 0$

000


Represent CHCs by graph (example)


• • •

Represent CHCs by graph (example)



Experimental results

Represent CHCs by graph (example from benchmark)

Training phase (train a model)

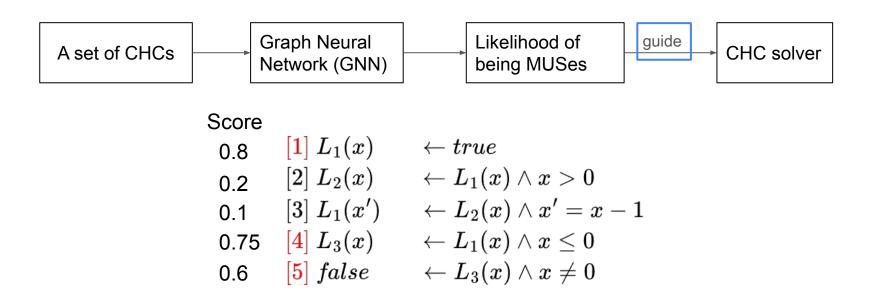
Training phase (train a model)

Labeled CHCs

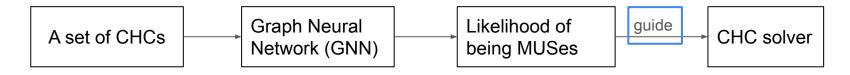
Graph
representation

Node classification

Graph Neural
Network


- Relational Hypergraph Neural Network [1]
 - Can handle different types of hyperedges

[1] Chencheng Liang, Philipp Rümmer, and Marc Brockschmidt. Exploring Representation of Horn Clauses using GNNs


 $\bullet \bullet \bullet$

••••

Prediction phase

Prediction phase

- Use scores alone
- Combine with original prioritizing scores
 - Add/subtract normalized or ranked scores with coefficient
 - Randomly shifting between MUS and original score

Experimental results

Benchmarks from CHC-COMP

Linear LIA problems								
	8705							
Benchmarks for training Holdout set						out set		
	783	4 (90%	%)		871 (10%)			
U	INSAT	7	SAT	T/O	Eval.	N/A		
	1585	*	4004	2245	383	488		
Train	Valid	N/A			ke A			
782	87	716						

Experimental results

Benchmarks from CHC-COMP

Linear LIA proble	ems	Non-linear LIA problems					
8705			8425				
Benchmarks for training	Holdout set	Benchmarks for	training	Holdout set			
7834 (90%)	871 (10%)	7579 (90%	(o)	846 (10%)			
UNSAT SAT T/O	Eval. N/A	UNSAT	SAT T/O	Eval. N/A			
1585 4004 2245	383 488	3315	4010 254	488 358			
Train Valid N/A		Train Valid N/A	90Å X				
782 87 716		1617 180 1518					

Background

Algorithms of CHC solver (Eldarica)

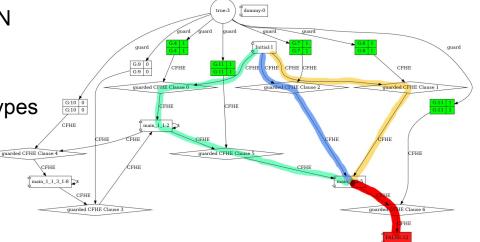
- Counterexample-guided abstraction refinement (CEGAR)
- Symbolic execution (SymEx)

Benchmark	MUS	Best ranking function (improvement in %)							
Algorithm	data set	Number of Solved Problems			Average Time				
	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT	
	Union	R-Plus	R-Plus	R-Minus	R-Plus	S-Plus	S-Minus	Rank	
Linear	(0)	(1.4%)	(2.4%)	(1.0%)	(1.3%)	(19.1%)	(46.5%)	(31.1%)	
CEGAR	Single	Rank	R-Plus	Rank	R-Plus	S-Plus	R-Minus	Rank	
	(3)	(3.6%)	(4.0%)	(8.2%)	(1.9%)	(26.6%)	(57.9%)	(36.3%)	
	Intersection	R-Plus	S-Plus	R-Plus	R-Plus	S-Plus	R-Minus	S-Plus	
	(4)	(4.1%)	(0.8%)	(9.3%)	(3.1%)	(27.6%)	(45.0%)	(0.0%)	
	Union	Two-Q	S-Plus*	Random	Two-Q	R-Minus	R-Minus	S-Plus	
Linear	(4)	(1.0%)	(0.0%)	(2.0%)	(0.9%)	(12.7%)	(30.2%)	(26.5%)	
SymEx	Single	S-Minus*	S-Plus*	Random	Random	S-Plus	Random	S-Plus	
	(3)	(0.5%)	(0.0%)	(2.0%)	(0.8%)	(12.9%)	(28.4%)	(17.6%)	
	Intersection	S-Plus*	S-Plus*	S-Plus*	S-Plus	Score	Random	R-Plus	
	(5)	(1.0%)	(0.0%)	(2.0%)	(1.3%)	(9.5%)	(28.4%)	(35.8%)	

Benchmark	MUS		Best ranking function (improvement in %)							
Algorithm	data set	Number	Number of Solved Problems			Average Time				
	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT		
	Union	R-Plus	R-Plus	R-Minus	R-Plus	S-Plus	S-Minus	Rank		
Linear	(0)	(1.4%)	(2.4%)	(1.0%)	(1.3%)	(19.1%)	(46.5%)	(31.1%)		
CEGAR	Single	Rank	R-Plus	Rank	R-Plus	S-Plus	R-Minus	Rank		
	(3)	(3.6%)	(4.0%)	(8.2%)	(1.9%)	(26.6%)	(57.9%)	(36.3%)		
	Intersection	R-Plus	S-Plus	R-Plus	R-Plus	S-Plus	R-Minus	S-Plus		
	(4)	(4.1%)	(0.8%)	(9.3%)	(3.1%)	(27.6%)	(45.0%)	(0.0%)		
	Union	Two-Q	S-Plus*	Random	Two-Q	R-Minus	R-Minus	S-Plus		
Linear	(4)	(1.0%)	(0.0%)	(2.0%)	(0.9%)	(12.7%)	(30.2%)	(26.5%)		
SymEx	Single	S-Minus*	S-Plus*	Random	Random	S-Plus	Random	S-Plus		
	(3)	(0.5%)	(0.0%)	(2.0%)	(0.8%)	(12.9%)	(28.4%)	(17.6%)		
	Intersection	S-Plus*	S-Plus*	S-Plus*	S-Plus	Score	Random	R-Plus		
	(5)	(1.0%)	(0.0%)	(2.0%)	(1.3%)	(9.5%)	(28.4%)	(35.8%)		

Benchmark	MUS	Best ranking function (improvement in %)						
Algorithm	data set	Numbe	Number of Solved Problems			Averag	ge Time	-
111801111111	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT
Non-	Union	S-Plus	S-Plus	S-Plus*	S-Plus	R-Minus	Rank	S-Plus
Linear	(7)	(0.5%)	(0.8%)	(0.0%)	(7.1%)	(20.8%)	(53.5%)	(19.4%)
CEGAR	Single	R-Plus	R-Plus	R-Plus*	R-Plus	S-Plus	R-Minus	R-Minus
CEGAR	(1)	(0.2%)	(0.4%)	(0.0%)	(6.6%)	(18.4%)	(52.8%)	(14.2%)
	Intersection	R-Plus*	S-Plus	S-Plus*	R-Plus	R-Plus	Rank	S-Plus
	(1)	(0.0%)	(0.5%)	(0.0%)	(5.9%)	(20.3%)	(45.8%)	(16.8%)
NT.	Union	Two-Q	S-Minus*	Random	Two-Q	R-Minus	Score	R-Plus
Non- Linear	(6)	(6.1%)	(1.6%)	(12.3%)	(13.3%)	(7.3%)	(5.1%)	(19.9%)
SymEx	Single	Two-Q	Score	Two-Q	Two-Q	Rank	R-Minus	Two-Q
	(3)	(6.1%)	(1.6%)	(12.9%)	(12.4%)	(-2.2%)	(0.2%)	(11.2%)
	Intersection	Two-Q	S-Plus	Two-Q	Two-Q	S-Minus	Two-Q	S-Plus
	(3)	(6.1%)	(1.6%)	(12.9%)	(12.7%)	(0.6%)	(1.7%)	(5.4%)

Benchmark Algorithm	MUS data set (best count)	Best ranking function (improvement in %)						
		Number of Solved Problems			Average Time			
		Total	SAT	UNSAT	All	Common	SAT	UNSAT
Non- Linear CEGAR	Union	S-Plus	S-Plus	S-Plus*	S-Plus	R-Minus	Rank	S-Plus
	(7)	(0.5%)	(0.8%)	(0.0%)	(7.1%)	(20.8%)	(53.5%)	(19.4%)
	Single	R-Plus	R-Plus	R-Plus*	R-Plus	S-Plus	R-Minus	R-Minus
	(1)	(0.2%)	(0.4%)	(0.0%)	(6.6%)	(18.4%)	(52.8%)	(14.2%)
	Intersection	R-Plus*	S-Plus	S-Plus*	R-Plus	R-Plus	Rank	S-Plus
	(1)	(0.0%)	(0.5%)	(0.0%)	(5.9%)	(20.3%)	(45.8%)	(16.8%)
Non- Linear SymEx	Union	Two-Q	S-Minus*	Random	Two-Q	R-Minus	Score	R-Plus
	(6)	(6.1%)	(1.6%)	(12.3%)	(13.3%)	(7.3%)	(5.1%)	(19.9%)
	Single	Two-Q	Score	Two-Q	Two-Q	Rank	R-Minus	Two-Q
	(3)	(6.1%)	(1.6%)	(12.9%)	(12.4%)	(-2.2%)	(0.2%)	(11.2%)
	Intersection	Two-Q	S-Plus	Two-Q	Two-Q	S-Minus	Two-Q	S-Plus
	(3)	(6.1%)	(1.6%)	(12.9%)	(12.7%)	(0.6%)	(1.7%)	(5.4%)


Summary

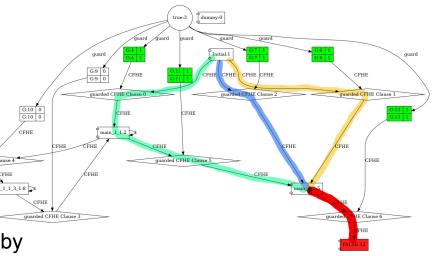
General framework that integrates GNN guidance into a CHC solver

Graph representation of CHCs

A new GNN that can handle different types
 of byparedges.

of hyperedges

Summary


General framework that integrates GNN guidance into a CHC solver

Graph representation of CHCs

 A new GNN that can handle different types of hyperedges

Conclusion

- GNN can be used to speed up CHC solver by predicting MUSes
- GNN learns simple patterns
- It is difficult to learn intricate patterns

What to learn

- Apply deep learning to improve verification (formal methods)
 - Learn reasoning

Reasoning

- Inductive reasoning
- Deductive reasoning

Reasoning

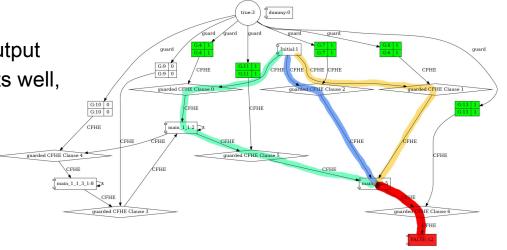
- Inductive reasoning (learn from examples)
- Deductive reasoning

Reasoning

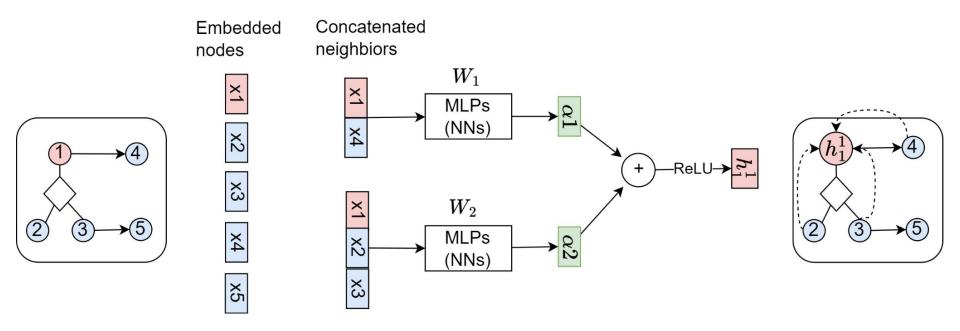
- Inductive reasoning (learn from examples)
- Deductive reasoning (learn from instructions)

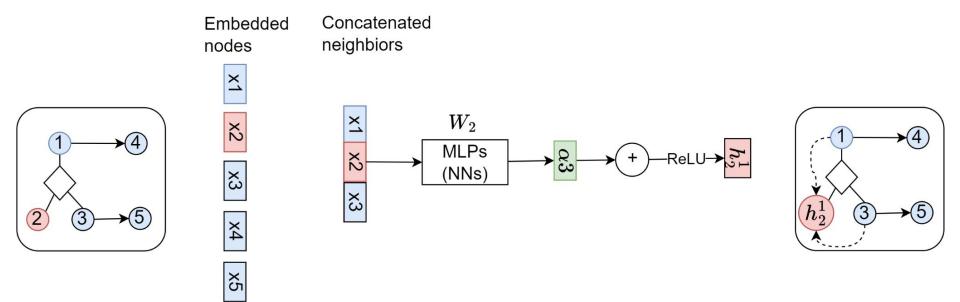
Thank you!

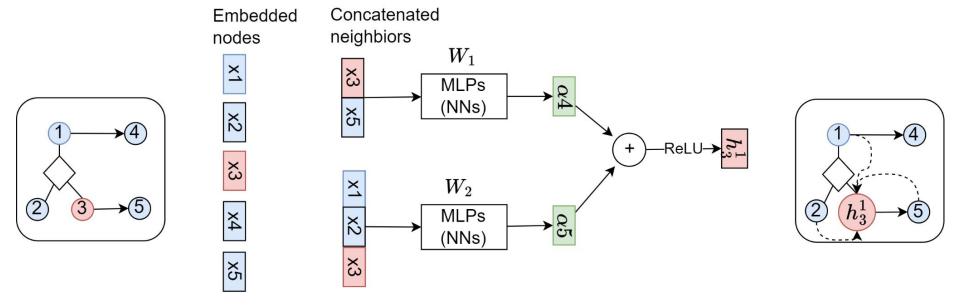
Q&A

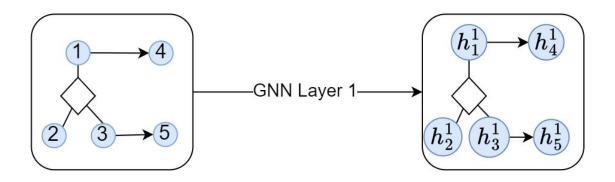

Discussion

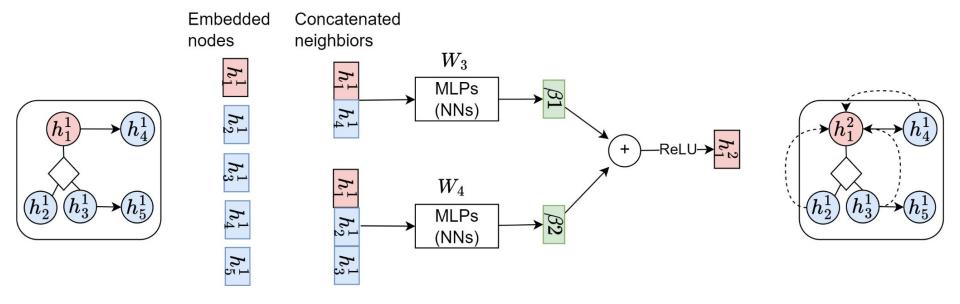
Deep learning for ranking problem


Various number of input and output


 Each model learn particular concepts well, but how to combine them

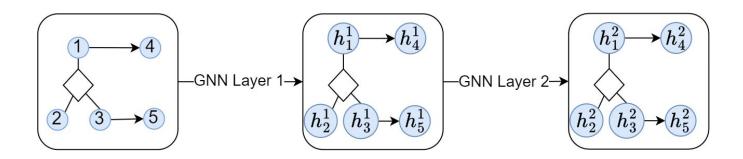

Transfer learning





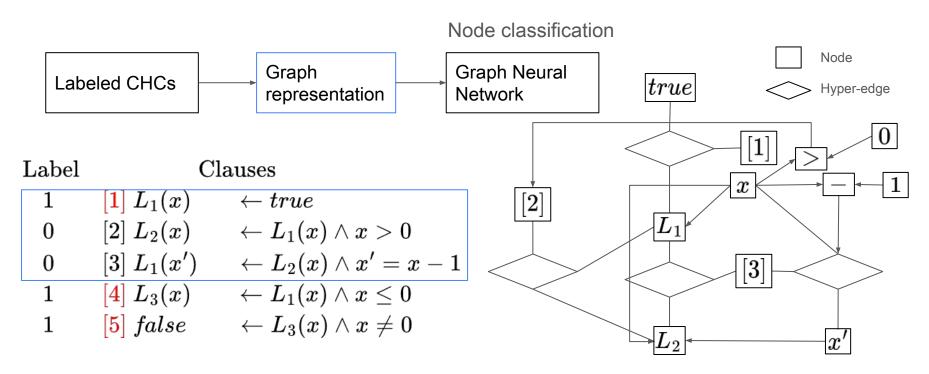
• •

MUSHyperNet Framework (GNN model):



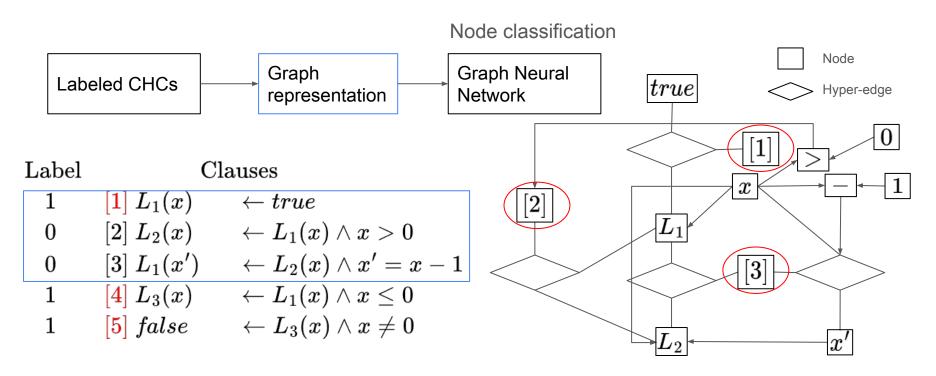
• •

CHCs


$\circ \circ \circ \circ \circ$

MUSHyperNet Framework (GNN model):

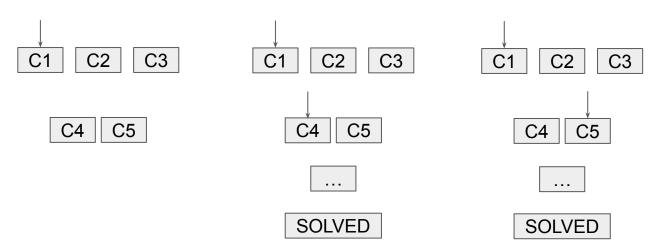
000


Training phase (train a model)

000

••••

Training phase (train a model)


00000

000

Motivation

- Target: data-driving method to prioritizing CHCs
- Challenge: search space for collecting training data is too big

MUSes of CHCs

$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$

{[1], [4], [5]} is the only MUSes

- Algorithms
 - Counterexample-guided abstraction refinement (CEGAR)
 - Symbolic execution (Symex)

•

• • •

MUSes of CHCs

Score

0.8 [1]
$$L_1(x) \leftarrow true$$

0.2 [2]
$$L_2(x) \leftarrow L_1(x) \land x > 0$$

0.1 [3]
$$L_1(x') \leftarrow L_2(x) \wedge x' = x-1$$

0.75 [4]
$$L_3(x) \leftarrow L_1(x) \land x \leq 0$$

0.6 [5]
$$false \leftarrow L_3(x) \land x \neq 0$$

{[1], [4], [5]} is the only MUSes

- Algorithms
 - Counterexample-guided abstraction refinement (CEGAR)
 - Symbolic execution (Symex)

- Prioritize CHCs by using predicted scores of CHCs
 - Use scores alone
 - Combine with original prioritizing scores
 - Add/subtract normalized or ranked scores with coefficient
 - Randomly shift to MUS and original score

Algorithm	Name
- C-2	Fixed
87	Random
CEGAR	Score
0-	Rank
9.	R-Plus
-	S-Plus
	R-Minus
	S-Minus
Que	Fixed
9-	Random
SymEx -	Score
Sylliex	Rank
	R-Plus
	S-Plus
	R-Minus
	S-Minus
1	Two-queue

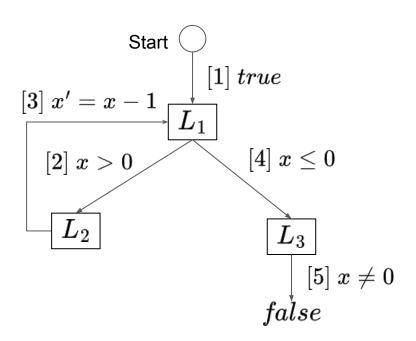
CHCs

Experimental results (Improved percentage)

Benchmark	MUS		Best rar	king fund	tion (im	proveme	nt in %)		
Algorithm	data set	Number of Solved Problems			Average Time				
80	(best count)	Total	SAT	UNSAT	All	Common	SAT	UNSAT	
	Union	R-Plus	R-Plus	R-Minus	R-Plus	S-Plus	S-Minus	Rank	
Linear	(0)	(1.4%)	(2.4%)	(1.0%)	(1.3%)	(19.1%)	(46.5%)	(31.1%)	
CEGAR	Single	Rank	R-Plus	Rank	R-Plus	S-Plus	R-Minus	Rank	
and the same of	(3)	(3.6%)	(4.0%)	(8.2%)	(1.9%)	(26.6%)	(57.9%)	(36.3%)	
	Intersection	R-Plus	S-Plus	R-Plus	R-Plus	S-Plus	R-Minus	S-Plus	
9%	(4)	(4.1%)	(0.8%)	(9.3%)	(3.1%)	(27.6%)	(45.0%)	(0.0%)	
	Union	Two-Q	S-Plus*	Random	Two-Q	R-Minus	R-Minus	S-Plus	
Linear	(4)	(1.0%)	(0.0%)	(2.0%)	(0.9%)	(12.7%)	(30.2%)	(26.5%)	
SymEx	Single	S-Minus*	S-Plus*	Random	Random	S-Plus	Random	S-Plus	
	(3)	(0.5%)	(0.0%)	(2.0%)	(0.8%)	(12.9%)	(28.4%)	(17.6%)	
	Intersection	S-Plus*	S-Plus*	S-Plus*	S-Plus	Score	Random	R-Plus	
	(5)	(1.0%)	(0.0%)	(2.0%)	(1.3%)	(9.5%)	(28.4%)	(35.8%)	

Experimental results (Improved percentage)

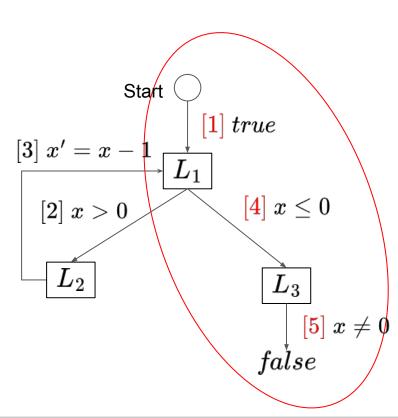
CHCs


Benchmark	data set	Best ranking function (imp					provement in %) Average Time		
Algorithm	(best count)		SAT	UNSAT	All	Common	SAT	UNSAT	
Non- Linear CEGAR	Union (7)	S-Plus (0.5%)	S-Plus (0.8%)	S-Plus* (0.0%)	S-Plus (7.1%)	R-Minus (20.8%)	Rank (53.5%)	S-Plus (19.4%)	
	Single (1)	R-Plus (0.2%)	R-Plus (0.4%)	R-Plus* (0.0%)	R-Plus (6.6%)	S-Plus (18.4%)	R-Minus (52.8%)	R-Minus (14.2%)	
	Intersection (1)	R-Plus* (0.0%)	S-Plus (0.5%)	S-Plus* (0.0%)	R-Plus (5.9%)	R-Plus (20.3%)	Rank (45.8%)	S-Plus (16.8%)	
Non- Linear SymEx	Union (6)	Two-Q (6.1%)	S-Minus* (1.6%)	Random (12.3%)	$\frac{\text{Two-Q}}{(13.3\%)}$	R-Minus (7.3%)	$\begin{array}{c} \mathbf{Score} \\ (5.1\%) \end{array}$	R-Plus (19.9%)	
	Single (3)	Two-Q (6.1%)	$\begin{array}{c} \mathbf{Score} \\ (1.6\%) \end{array}$	Two-Q (12.9%)	Two-Q (12.4%)	Rank (-2.2%)	R-Minus (0.2%)	Two-Q (11.2%)	
	Intersection (3)	Two-Q (6.1%)	S-Plus (1.6%)	$\begin{array}{c} \text{Two-Q} \\ (12.9\%) \end{array}$	Two-Q (12.7%)	S-Minus (0.6%)	Two-Q (1.7%)	S-Plus (5.4%)	

00

Visualize CHCs with dependency graph

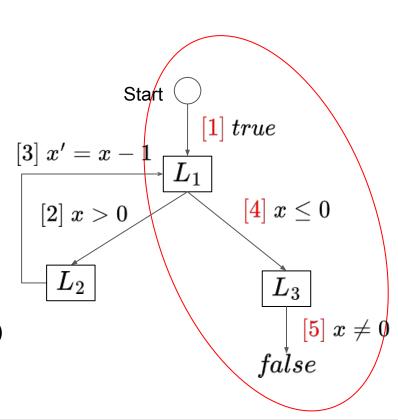
$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$


• •

MUSes of CHCs

$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$

{[1], [4], [5]} is the only MUSes



MUSes of CHCs

$$egin{array}{lll} [1] \ L_1(x) & \leftarrow true \ [2] \ L_2(x) & \leftarrow L_1(x) \wedge x > 0 \ [3] \ L_1(x') & \leftarrow L_2(x) \wedge x' = x - 1 \ [4] \ L_3(x) & \leftarrow L_1(x) \wedge x \leq 0 \ [5] \ false & \leftarrow L_3(x) \wedge x
eq 0 \end{array}$$

- Algorithms
 - Counterexample-guided abstraction refinement (CEGAR)
 - Symbolic execution (Symex)

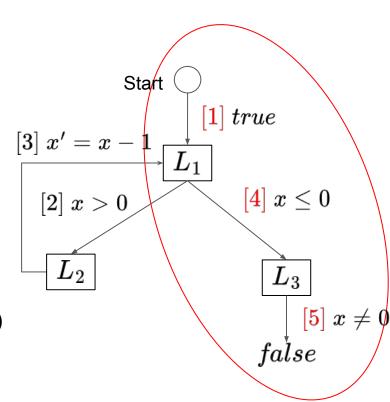
.

MUSes of CHCs

Score

0.8 [1]
$$L_1(x) \leftarrow true$$

0.2 [2]
$$L_2(x) \leftarrow L_1(x) \land x > 0$$

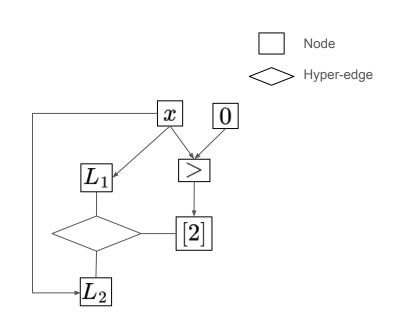

0.1
$$[3]$$
 $L_1(x')$ $\leftarrow L_2(x) \wedge x' = x-1$

0.75 [4]
$$L_3(x) \leftarrow L_1(x) \land x \leq 0$$

0.6 [5]
$$false \leftarrow L_3(x) \land x \neq 0$$

Algorithms

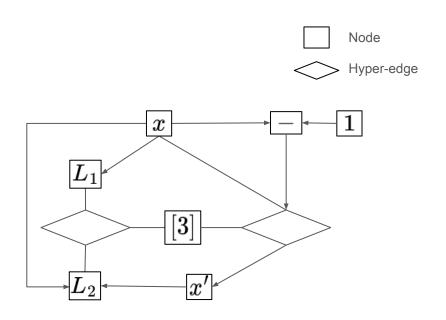
- Counterexample-guided abstraction refinement (CEGAR)
- Symbolic execution (Symex)



Represent CHCs by graphs

.

Label	Cla	auses
1	$\boldsymbol{[1]}\; L_1(x)$	$\leftarrow true$
0	$[2] \ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	$\boldsymbol{[4]}\;L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	${f [5]}\ false$	$\leftarrow L_3(x) \land x \neq 0$

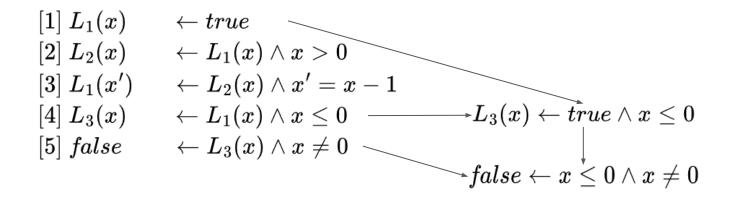


00000

Represent CHCs by graphs

Label	\mathbf{C}	lauses
1	[1] $L_1(x)$	$\leftarrow true$
0	$[2]\ L_2(x)$	$\leftarrow L_1(x) \land x > 0$
0	$[3] \ L_1(x')$	$\leftarrow L_2(x) \wedge x' = x - 1$
1	[4] $L_3(x)$	$\leftarrow L_1(x) \land x \leq 0$
1	$[5] \ false$	$\leftarrow L_3(x) \land x \neq 0$

Experimental results


		Number of Solved Problems (improvement %)			s	Average Time (improvement %)			
Benchmark Algorithm		Total	SAT	UNSAT	All	Commo	n SAT	UNSAT	
	Default	432	250	182	131.12	42.05	43.34	40.28	
Non	Random	425	243	182	143.42	34.27	34.84	38.75	
Linear	Random	(-1.6%)	(-2.8%)	(0.0%)	(-9.4%)	(-11.1%)	(19.6%)	(3.8%)	
CEGAR	R-Plus	432	250	182	122.29	31.74	28.59	37.82	
CEGAR	n-Flus	(0.0%)	(0.0%)	(0.0%)	(6.7%)	(17.8%)	(34.0%)	(6.1%)	
	R-Minus	417	240	177	154.07	26.20	21.46	32.51	
	n-Minus	(-3.5%)	(-4.0%)	(-2.7%)	(-17.5%)	(20.8%)	(50.5%)	(19.3%)	
	S-Plus	434	252	182	121.75	34.64	35.97	39.10	
	5-Pius	(0.5%)	(0.8%)	(0.0%)	(7.1%)	(13.1%)	(17.0%)	(2.9%)	
	S-Minus	421	242	179	149.02	31.76	26.33	38.95	
		(-2.5%)	(-3.2%)	(-1.6%)	(-13.7%)	(-2.0%)	(39.2%)	(3.3%)	
	Portfolio	435	253	182	113.49	28.24	30.57	31.75	
		(0.7%)	(1.2%)	(0.0%)	(13.4%)	(29.1%)	(29.5%)	(21.2%)	
	Default	342	187	155	343.82	28.39	29.05	27.59	
	Random	362	188	174	301.90	32.67	36.24	41.83	
Non		(5.8%)	(0.5%)	(12.3%)	(12.2%)	(-15.1%)	(-24.8%)	(-51.6%)	
Linear	R-Plus	339	190	149	357.18	27.88	47.71	22.10	
SymEx		(-0.9%)	(1.6%)	(-3.9%)	(-3.9%)	(0.3%)	(-64.2%)	(19.9%)	
	R-Minus	361	189	172	299.86	26.35	37.68	27.98	
	10-Willias	(5.6%)	(1.1%)	(11.0%)	(12.8%)	(7.3%)	(-29.7%)	(-1.4%)	
	S-Plus	340	189	151	352.84	29.04	41.41	24.54	
	S-1 Ius	(-0.6%)	(1.1%)	(-2.6%)	(-2.6%)	(-0.3%)	(-42.5%)	(11.1%)	
	S-Minus	362	190	172	303.65	28.62	44.11	37.95	
	5-Milius	(5.8%)	(1.6%)	(11.0%)	(11.7%)	(-0.4%)	(-51.8%)	(-37.5%)	
	Two ones	363	189	174	297.93	30.15	41.14	32.51	
	Two-queue	(6.1%)	(1.1%)	(12.3%)	(13.3%)	(-6.2%)	(-41.6%)	(-17.8%)	
	Portfolio	366	191	175	288.85	22.29	42.42	26.75	
0	Portiolio	(7.0%)	(2.1%)	(12.9%)	(16.0%)	(21.4%)	(-46.0%)	(3.0%)	

Experimental results

 At least one setting has improvement

		Number of Solved Problems (improvement %)			s	Average Time (improvement %)				
Benchmark Algorithm		Total	SAT	UNSAT	All	Common SA		T UNSAT		
100	Default	222	125	97	519.38	25.77	38.97	8.77		
P12290A	Random	221	124	97	523.58	27.49	37.05	15.85		
Linear	Tomas	(-0.5%)	(-0.8%)	(0.0%)	(-0.8%)	(-29.5%)	(4.9%)	(-80.7%)		
CEGAR	R-Plus	$\frac{225}{(1.4\%)}$	128 $(2.4%)$	97 $(0.0%)$	512.41 $(1.3%)$	21.65 $(16.0%)$	42.89 (-10.1%)	11.99 (-36.7%)		
	12.012.02	220	122	98	526.08	18.02	30.93	21.60		
	R-Minus	(-0.9%)	(-2.4%)	(1.0%)	(-1.3%)	(-24.4%)	(20.6%)	(-146.3%)		
	G DI	222	125	97	517.43	20.92	34.13	7.32		
	S-Plus	(0.0%)	(0.0%)	(0.0%)	(0.4%)	(19.1%)	(12.4%)	(16.5%)		
	0.36	219	122	97	522.97	12.56	20.86	9.81		
	S-Minus	(-1.4%)	(-2.4%)	(0.0%)	(-0.7%)	(2.4%)	(46.5%)	(-11.9%)		
	Portfolio	229	130	99	503.16	18.28	45.67	19.94		
	Portiono	(3.2%)	(4.0%)	(2.1%)	(3.1%)	(29.1%)	(-17.2%)	(-127.4%)		
	Default	200	101	99	590.68	33.16	55.42	10.44		
	Random	201	100	101	586.12	30.08	39.69	20.95		
Linear		(0.5%)	(-1.0%)	(2.0%)	(0.8%)	(-8.5%)	(28.4%)	(-100.7%)		
SymEx	R-Plus	192	101	91	617.60	38.59	52.87	21.99		
Symex		(-4.0%)	(0.0%)	(-8.1%)	(-4.6%)	(-10.9%)	(4.6%)	(-110.6%)		
	R-Minus	200	100	100	586.24	24.67	38.69	10.60		
	n-Minus	(0.0%)	(-1.0%)	(1.0%)	(0.8%)	(12.7%)	(30.2%)	(-1.5%)		
	S-Plus	198	101	97	595.02	30.22	50.97	7.67		
	5-Fius	(-1.0%)	(0.0%)	(-2.0%)	(-0.7%)	(11.6%)	(8.0%)	(26.5%)		
	S-Minus	201	101	100	586.35	30.64	50.57	10.65		
	5-Millus	(0.5%)	(0.0%)	(1.0%)	(0.7%)	(7.8%)	(8.8%)	(-2.0%)		
	Two-queue	202	101	101	585.58	35.11	49.94	20.14		
	1 wo-queue	(1.0%)	(0.0%)	(2.0%)	(0.9%)	(-5.9%)	(9.9%)	(-92.9%)		
	Portfolio	206	101	105	569.1	25.79	44.58	10.16		
	1 01 010110	(3%)	(0.0%)	(6.1%)	(3.7%)	(22.2%)	(19.6%)	(2.6%)		

Minimal Unsatisfiable Subsets (MUSes) of CHCs

