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Verification and Deep Learning

e \erify neural networks
e Apply deep learning to improve verification
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Verification and Deep Learning

e \Verify neural networks.

e | Apply deep learning to improve verification (examples)
Premise selection for Automatic Theorem Provers (ATPs)
Variable branching decision for SAT solvers

Instance selection in SMT solving

Algorithm selection for software verification
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Verification and Deep Learning

e \Verify neural networks.
e | Apply deep learning to improve verification.
o Decision making problems (classification task)




What to learn

e Apply deep learning to improve |verification (formal methods)

o Learn?



What to learn

e Apply deep learning to improve recommendation system

o Learnirelations




What to learn

e Apply deep learning to improve|language translation

o Learn|semantics




What to learn

e Apply deep learning to improve |protein structure prediction

o Learn|isomorphism




What to learn

e Apply deep learning to improve |verification (formal methods)

o Learn?



What to learn

e Apply deep learning to improve

©)

Learn reasoning

verification (formal methods)
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Background
([

Background

e Program verification
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Background

Program verification (example)

intx=_;

while (x > 0){
X--

}

if (x 1= 0) error(); }

e \Whether exists a path that leads to
the error state
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Background

Background

e Program verification
e Encode program verification to Constraint Horn Clauses (CHCs)
o Solving the CHCs is solving the program verification problem
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Background

Constraint Horn Clauses (CHCs)

A CHC is a formula in the format

VV.L[X] ¢ Li[X1]A. .. ALn[Xa] A @

Where

V are variables,

X, are terms over V,

L,L,,...,L, aren-ary relation symbols,

L;|X;] is an atom of relation symbol to the terms,
@ is a constraint in the background theory 7.
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Background
[ J

A set of CHCs (example)

A CHC is a formula in the format
VV.L[X] + L[ X A .. AL [ X R A

1 () — true
2(z) < Li(=)
() «— Le(z)hz' =z —1
Ls(x) — Li(z) Nz <=0
false < Ls(z)

S

h
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Background
([

Background

e Program verification
e Constraint Horn Clauses (CHCs)
e Encode program verification to CHCs
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Background
([

A program and its CHCs (example)

int x =

while (x > 0

X--,
}
if (x 1= 0){ error(); }
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Background
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Background

Program verification

Constraint Horn Clauses (CHCs)
Encode program verification to CHCs
Solving CHCs
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Background
[ J

A program and its CHCs (example)

intx=_;

while (x > 0}

X-=;
}

if (x 1= 0){ error(); }

A path to error

Cannot find interpretations to atoms
to make the set of CHCs true
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Background

Background

e Techniques for solving CHCs
o Counterexample-guided abstraction refinement (CEGAR)
o Symbolic execution based technique
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Background
([

Background

e \Which CHC is processed first in a set of CHCs is important
o General ranking problem
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Background

Background

e CHC selection
o Premise selection for Automatic Theorem Provers (ATPs)
o Variable branching decision for SAT solvers
o Instance selection in SMT solving

e C(Classification task with various input and output

23



Background

Background

e Examples of prioritizing (ranking) CHCs
o The fewer dependencies the higher priority
o Solving simpler CHCs outside of cycles may reduce complexity within the
cycles or overall problem space
o Domain specific heuristics: in program verification, clauses representing
base cases in recursive functions might be simpler to solve.
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Background

Motivation

e TJarget: data-driving method to prioritize CHCs (deep learning)
e Challenge: hard to form training data

C1 C2 || C3
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Motivation

e TJarget: data-driving method to prioritize CHCs (deep learning)
e Challenge: hard to form training data
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C1 C2 || C3

C4 || C5

Solved




Background

Motivation

e TJarget: data-driving method to prioritize CHCs (deep learning)
e Challenge: hard to form training data

l |

C1 C2 || C3 C1 C2 || C3

C4 || C5 C6

Solved Solved




Background

Motivation

e TJarget: data-driving method to prioritize CHCs (deep learning)
e Challenge: hard to form training data

l l |

C1 C2 || C3 C1 C2 || C3 C1 C2 || C3

C4 || C5 C6 C7||C8||C9

Solved Solved Timeout




Background

Motivation

e T[arget: data-driving method to prioritize CHCs
e Challenge: hard to form training data
e |dea: focus on learning a particular concept

o Minimal Unsatisfiable Subsets (MUSes)
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Background
([

Minimal Unsatisfiable Subsets (MUSes) of CHCs

[1] Ly () < true

[2] Lz(ib) — Ll(:c) ANx >0
3] Li(z") «+ Lo(zx)ANz' =z —1
[4] L3(z) — Li(z)Nx <0

5] false — Ls(z) Nz #0
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Background

Minimal Unsatisfiable Subsets (MUSes) of CHCs

1] Ly () — true

E ﬁjg?) - ZEZ; 2 ﬁiow . {11141 [5]} is the only MUS
4] Ls(x) — Li(z) Nz <0

5] false < Li(z) Nz #0

Property: If any subset of the set of CHCs is UNSAT, then the
entire set of CHCs is also UNSAT.
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Background

Framework

Deep Learning-Based Framework (prediction phase)

A set of CHCs

Graph Neural
Network (GNN)

Likelihood of
being MUSes

guide

CHC solver
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Background

Prediction phase

A set of CHCs

Framework
[ ]
Graph Neural Likelihood of guide
Network (GNN) being MUSes
1] Ly () — true
2] Ly(x) — Li(x) ANz >0
3] L1(z') <« La(zx) Az’ =z —1
[4] Ls(x) — Li(x) Nz <0
5] false — Ly(x) Nz #0

CHC solver
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Background

Prediction phase

A set of CHCs

Framework
[ )

Graph Neural Likelihood of guide
Network (GNN) being MUSes

1] Lhrue

2] Lo() — Li(x) ANz >0

3| Li(z') <+ Ly(z)Nz' =z —1

4] L3(z) — Li(x) Nz <0

5| false «— Lay(x) Nx #0

CHC solver
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Background

Prediction phase

A set of CHCs

Framework
o
Graph Neural Likelihood of guide
Network (GNN) being MUSes
Score /
08 | [1] Li(z) — true
02 | [2]L2(z) <« Li(z)Axz>0
0.1 3 Ll(ﬂl') — Ly(x) A r=z—1
0.75 | [4] Ls(z) — Li(z) ANz <0
0.6 | [5] false — Ls(z) Nz #0

CHC solver
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Background

Prediction phase

A set of CHCs

Framework
Graph Neural Likelihood of guide
Network (GNN) being MUSes CHC solver
Score

0.8 [1] L1(€L‘) — true
02 | [2] La(z) < Li(z)Az>0
01 | B]Li(z') < Ly(z)Aha' =z—1 Prioritized CHCs:
075 | [4] Ly(z)  + Li(e) Az <0 1], (4], [5), [2], [3]
0.6 | [5] false — Ly(z) Nz #0
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Background

Framework
[ ]

Deep Learning-Based Framework

A set of CHCs

Graph Neural

Network (GNN)

Likelihood of

N

Collect training data

being MUSes

guide

Train

CHC solver
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Background

Framework

Training phase (collect training data)

A set of CHCs

SAT/timeout

CHC solver

NSAT

Dischard

Extract MUSes

Labeled CHCs
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Background

Framework

Training phase (collect training data)

A set of CHCs

CHC solver UNSAT
Clauses

+— true

< Ll(ib ANx >0

Extract MUSes

Labeled CHCs
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Background

Framework

Training phase (collect training data)

A set of CHCs
Label
1 1] Ly(x)
0 2] La(z)
0 [3] Ll(ZB’
1 4] Lz(x)
1 5] false

CHC solver UNSAT
Clauses

+— true

< Ll(:v ANx >0

Extract MUSes

Labeled CHCs

40



Background

Framework

Training phase (collect training data)

A set of CHCs
Label
1 1] Ly(x)
0 2] La(z)
0 [3] Ll((I}’
1 [4] Ls(z)
1 5] false

CHC solver UNSAT
Clauses

+— true

— L1 (ZB

Extract MUSes

When there are multiple MUSes

O

O

O

Union

Labeled CHCs

Intersection

Single
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Background

Framework
[ )

Training phase (train a model)

Graph

Labeled CHCs

Label
1 1] Ly(x)
0 2] La(z)
0 [3] Ll((IZ’
1 [4] Li(=)
1 5] false

representation

Graph Neural

Clauses

Network
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Background

Framework
[ )

Training phase (train a model)

Graph

Labeled CHCs

Label
1 1] Ly(x)
0 2] La(z)
0 [3] Ll(ZB’
1 [4] Li(=)
1 5] false

representation

Node classification

Graph Neural

Clauses

Network
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Background

Framework
[ )

Training phase (train a model)

Graph

Labeled CHCs

Label
1 1] Ly(x)
0 2] La(z)
0 [3] Ll(ZB’
1 4] Lz(x)
1 5] false

representation

Node classification

Graph Neural

Clauses

Network
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Background Framework
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Represent CHCs by graph (example)

I:I Node
Hyper-edge
Label Clauses <> Hyper-edg
1 _1_ Ll(iv) < true ro—
0 2| Ly() < Lyi(x )/\ac>0
1[4 Ls(z) <« Li(z)Az <0
1 [5] false < La(z) Az #0 L [z




Background

Framework

Represent CHCs by graph (example)

Label Clauses
1 11| Lq(x) — true
0 2] Ly(z) — Li(x) ANz >0
0 3] Li(z") « Lo(z)ANz' =z —1
1 4] Ls(x) — Li(z)ANx <0
1 5] false < Ly(z) Nz #0

true

Fa
=8

I:I Node

<> Hyper-edge
1]

0

Lo
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Background Framework
o

Represent CHCs by graph (example)

Label Clauses
1 11| Lq(x) — true
0 2] Ly(x) «— Li(z) Nx >0
0 3] Li(z") « Lo(z)ANz' =z —1 2]
1 4] Ls(x) — Li(z)ANx <0
1 (z)




Background Framework
o

Represent CHCs by graph (example)

true <~ > Hyper-edge
Label Clauses 1 S

1 1] Ly ( — true

_ o o
S
t~
[
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Background Framework
[ J

Represent CHCs by graph (example from benchmark)

ARG 03 I dummy’ o
_ sT_1

_—

———Guarded OFHE Clauss

crue FiiE
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Background

Framework
[ ]

Training phase (train a model)

Labeled CHCs

Graph
representation

Node classification

Graph Neural

Network
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Background

Framework
[ ]

Training phase (train a model)

Labeled CHCs

Graph
representation

Node classification

Graph Neural

Network

e Relational Hypergraph Neural Network [1]
o Can handle different types of hyperedges

[1] Chencheng Liang, Philipp Rimmer, and Marc Brockschmidt.
Exploring Representation of Horn Clauses using GNNs
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Background

Prediction phase

A set of CHCs

Framework
[ J
Graph Neural Likelihood of guide
Network (GNN) being MUSes CHC solver
Score

0.8 [1] L1(€L‘) — true
02 [2]L2(z) <+ Li(z)Az>0
01 [3]Li(z)) <« Ly(z)ra =z—1
075 [4] Ls(x) <+ Li(z)Az<0
0.6 [5] false — Ly(z) Nz #0

52



Background

Prediction phase

A set of CHCs

Graph Neural
Network (GNN)

Framework
[ )

Likelihood of

e Use scores alone
e Combine with original prioritizing scores

m Add/subtract normalized or ranked scores with coefficient

being MUSes

guide

CHC solver

m Randomly shifting between MUS and original score
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Background

Experimental results

Benchmarks from CHC-COMP

Linear LIA problems

8705

Benchmarks for training

Holdout set

7834 (90%)

871 (10%)

UNSAT

SAT

T/O

Eval.

N/A

1585

4004

2245

383

488

Train

Valid[N/A

782

87

716

Experimental results
([
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Background

Experimental results

e Benchmarks from CHC-COMP

Experimental results
([

Linear LIA problems

Non-linear LIA problems

8705

8425

Benchmarks for training

Holdout set

Benchmarks for training |Holdout set

7834 (90%)

871 (10%)

7579 (90%) 846 (10%)

UNSAT SAT

T/O

Eval.

N/A

UNSAT  |SAT|T/O|Eval.| N/A

1585 4004

2245

383

488

3315 4010( 254 | 488 | 358

Train

Valid|[N/A

782

87 | 716

Train

Valid[N/A

1617

180 {1518
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Background

Experimental results

e Algorithms of CHC solver (Eldarica)
o Counterexample-guided abstraction refinement
(CEGAR)
o Symbolic execution (SymEXx)

Experimental results
[
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Background Experimental results
[ ]
e MUS Best ranking function (improvement in %)
ACIIgIZriTl?; data set | Number of Solved Problems | Average Time
(best count) Total SAT UNSAT All Common  SAT  UNSAT
Union R-Plus  R-Plus R-Minus R-Plus  S-Plus  S-Minus  Rank
Linear (0) (1.4%)  (2.4%) (1.0%) (1.3%) (19.1%) (46.5%) (31.1%)
CEGAR Single Rank R-Plus Rank  R-Plus S-Plus R-Minus Rank
(3) (3.6%) (4.0%) (82%) (1.9%) (26.6%) (57.9%) (36.3%)
Intersection| R-Plus| S-Plus R-Plus R-Plus S-Plus R-Minus S-Plus
(4) (4.1%)| (0.8%) (9.3%) (3.1%) (27.6%) (45.0%) (0.0%)
Union Two-Q S-Plus* Random Two-QQ R-Minus R-Minus S-Plus
Linear (4) (1.0%) (0.0%) (2.0%) (0.9%) (12.7%) (30.2%) (26.5%)
SymEx Single  S-Minus* S-Plus* Random Random S-Plus Random S-Plus
(3) (0.5%) (0.0%) (2.0%) (0.8%) (12.9%) (28.4%) (17.6%)
Intersection| S-Plus*| S-Plus* S-Plus* S-Plus Score Random R-Plus
(5) (1.0%) | (0.0%) (2.0%) (1.3%) (9.5%) (28.4%) (35.8%)
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Background

Experimental results

[ ]
Experimental results (Improved percentage)
MUS Best ranking function (improvement in %)
Benchmark . :
Algerithin data set Number of Solved Problems | Average Time |
(best count) Total SAT UNSAT All Common  SAT  UNSAT
Union R-Plus  R-Plus R-Minus R-Plus  S-Plus  S-Minus  Rank
Linear (0) (1.4%)  (2.4%) (1.0%) (1.3%) (19.1%) (46.5%) (31.1%)
CEGAR Single Rank R-Plus Rank  R-Plus S-Plus R-Minus Rank
(3) (3.6%) (4.0%) (82%) _(1.9%) (26.6%) (57.9%) (36.3%)
Intersection R-Plus S-Plus  R-Plus | R-Plus | S-Plus R-Minus S-Plus
(4) (4.1%)  (0.8%) (9.3%) | (3.1%) | (27.6%) (45.0%) (0.0%)
Union Two-Q S-Plus* Random Two-QQ R-Minus R-Minus S-Plus
Linear (4) (1.0%) (0.0%) (2.0%) (0.9%) (12.7%) (30.2%) (26.5%)
SymEx Single  S-Minus* S-Plus* Random Random S-Plus Random S-Plus
(3) (0.5%) (0.0%) (2.0%) (0.8%) (12.9%) (28.4%) (17.6%)
Intersection S-Plus* S-Plus* S-Plus* | S-Plus | Score Random R-Plus
(5) (1.0%) (0.0%) (2.0%) | (1.3%) | (9.5%) (28.4%) (35.8%)
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Background Experimental results
[ J

Experimental results (Improved percentage)

MUS Best ranking function (improvement in %)
data set  [Number of Solved Problems | Average Time

(best count) "1 SAT UNSAT Al Common SAT  UNSAT

Benchmark
Algorithm

N Union S-Plus| S-Plus S-Plus* S-Plus R-Minus Rank S-Plus

LW (7) (0.5%)| (0.8%) (0.0%) (7.1%) (20.8%) (53.5%) (19.4%)
Linear

CEGAR Single R-Plus  R-Plus R-Plus* R-Plus S-Plus R-Minus R-Minus

(1) (0.2%) (0.4%)  (0.0%) (6.6%) (18.4%) (52.8%) (14.2%)

Intersection R-Plus*  S-Plus  S-Plus* R-Plus R-Plus Rank S-Plus

(1) (0.0%) (0.5%)  (0.0%) (5.9%) (20.3%) (45.8%) (16.8%)

N Union Two-Q| S-Minus* Random Two-Q R-Minus Score R-Plus

S (6) (6.1%)| (1.6%) (12.3%) (13.3%) (7.3%) (5.1%) (19.9%)
Linear

SymEsk Single Two-Q Score Two-Q Two-Q Rank  R-Minus Two-Q

(3) (6.1%) (1.6%) (12.9%) (12.4%) (-2.2%) (0.2%) (11.2%)
Intersection Two-Q S-Plus Two-Q Two-Q S-Minus Two-Q S-Plus
(3) (6.1%) (1.6%) (12.9%) (12.7%) (0.6%) 1.7%)  (5.4%)
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Background Experimental results
[ J

Experimental results (Improved percentage)

MUS Best ranking function (improvement in %)
data set Number of Solved Problems | Average Time |

(best count) “mtal  SAT  UNSAT Al Common SAT  UNSAT

Benchmark
Algorithm

N Union S-Plus S-Plus S-Plus™* | S-Plus| R-Minus Rank S-Plus

LW (7) (0.5%) (0.8%) (0.0%) |(7.1%)| (20.8%) (53.5%) (19.4%)
Linear

CEGAR Single R-Plus  R-Plus R-Plus* R-Plus S-Plus R-Minus R-Minus

(1) (0.2%) (0.4%)  (0.0%) (6.6%) (18.4%) (52.8%) (14.2%)

Intersection R-Plus*  S-Plus  S-Plus* R-Plus R-Plus Rank S-Plus

(1) (0.0%) (0.5%)  (0.0%) (5.9%) (20.3%) (45.8%) (16.8%)

N Union Two-Q S-Minus* Random |Two-Q| R-Minus Score R-Plus

S (6) (6.1%) (1.6%) (12.3%) [(13.3%) (7.3%) (5.1%) (19.9%)
Linear

SymEsk Single Two-Q Score Two-Q Two-Q Rank  R-Minus Two-Q

(3) (6.1%) (1.6%) (12.9%) (12.4%) (-2.2%) (0.2%) (11.2%)
Intersection Two-Q S-Plus Two-Q Two-Q S-Minus Two-Q S-Plus
(3) (6.1%) (1.6%) (12.9%) (12.7%) (0.6%) 1.7%)  (5.4%)
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Summary

uuuuuu

e General framework that integrates GNN D
guidance into a CHC solver 7w ' = .
e Graph representation of CHCs 2l
A new GNN that can handle different types
of hyperedges

[Giolo]

guarded CFHE Clause 4
C
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Summary

e General framework that integrates GNN A
guidance into a CHC solver 7 ‘ ] 8 NG
e Graph representation of CHCs ‘
A new GNN that can handle different types
of hyperedges

Conclusion

e GNN can be used to speed up CHC solver by
predicting MUSes

e GNN learns simple patterns
It is difficult to learn intricate patterns
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What to learn

e Apply deep learning to improve

©)

Learn reasoning

verification (formal methods)
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Reasoning

e Inductive reasoning
e Deductive reasoning
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Reasoning

e Inductive reasoning (learn from examples)
e Deductive reasoning
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Reasoning

e Inductive reasoning (learn from examples)
e Deductive reasoning (learn from instructions)
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Thank you!

Q&A
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Discussion

e Deep learning for ranking problem
o Various number of input and output
e Each model learn particular concepts well,
but how to combine them
o Transfer learning

uuuuuu

ggggg
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MUSHyperNet framework

MUSHyperNet Framework (GNN model):

Embedded

nodes

Lox | [ox ] [ex ] ex ][]

Concatenated
neighbiors
_ W1
X
— MLPs
"I (NN
X (NNs)
X Wy
= | MLPs
] "' (NNs)
X
w
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MUSHyperNet framework

MUSHyperNet Framework (GNN model):

Embedded Concatenated
nodes neighbiors

[ MLPs

> RelLU>»S
(NNs)

ij

Lox | [ px ] [ex][2x ]| 1x]
[ ex] x| 1x|




MUSHyperNet framework

MUSHyperNet Framework (GNN model):

Embedded Concatenated

nodes neighbiors
|44}

MLPs
(NNs) 1

| ax | ex]|

@—ReLU—».E;

Wy
@ @0 [ MLPs S
/ (NNs) =

Lex [ex]ix)
\

Lox | [wx | [ex] x| 1x]
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MUSHyperNet framework

MUSHyperNet Framework (GNN model):

~
- -6
gﬂ GNN Layer 1—»| ‘

@ 0 (1) )

\_ / =

&
/
\




MUSHyperNet framework

MUSHyperNet Framework (GNN model):

Embedded Concatenated
nodes neighbiors

G ~3 Ws
. = | MLPs
4 > “|_(NNs) 7

15N

I

@-ReLU—»E;,

W4 g/
MLPs
(NNs) et

€
I

4

Y

-
Y

(4 [
IqI

g
I
€
I




MUSHyperNet framework

MUSHyperNet Framework (GNN model):

D—®
—GNN Layer 1>
2 @0

\

—GNN Layer 2—»|

i
i

)
SR
(k)

/

Ly

\

& &




Background Framework
([ J

Training phase (train a model)

Node classification

I:I Node
Graph Graph Neural
Labeled CHCs representation Network true <> Hyper-edge
0
1]
Label Clauses >—x
1 1] Li(x) — true 2]
0 [2]Ly(z) « Li(z)Az>0 L
0 [38]Li(z") <« Ly(z)ha'=z—1 < 3]
1 4] Ls(x) — Li(x) ANz <0
1 5] false — Ls(x) ANx #0




Background Framework
([ J

Training phase (train a model)

Node classification

I:I Node
Labeled CHCs gparzr;entation CN;:v?/ng:eural true <> Hyper-edge
0
Label Clauses B T
1 11| Lq(x) — true < [2D
0 [2] Lz(iL‘) < Ll(w) ANx >0 ]
0 3] Li(z") « Lo(z)ANz' =z —1
1 4] Ls(x) — Li(z)Nx <0
1 5] false — L3y(x) Nz #0
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Background
([

Motivation

e T[arget: data-driving method to prioritizing CHCs
e Challenge: search space for collecting training data is too big

l | l

C1 C2 || C3 C1 C2 || C3 C1 C2 || C3

C4 || C5 C4 || C5 C4 || C5

SOLVED SOLVED




MUSes of CHCs

MUSes of CHCs
E 228 c 2”’1“(‘; heeo {11, [41, [B]} is the only MUSes
8] Li(z') « Lo(z)ANz' =z —1
4] Ls(z) — Li(z)Nx <0 e Algorithms
5] false — Ly(z) ANz #0 o Counterexample-guided

abstraction refinement (CEGAR)
o Symbolic execution (Symex)

78



MUSes of CHCs

MUSes of CHCs
Score
0.8 [1] Li(z) — true .
02 2] Lo(z)  Lyz) Az >0 {[1], [4], [5]} is the only MUSes
0.1 [3]Li(z') <+ Ly(z)ha' =z—1
0.75 [4| L3(z) — Li(z)Nx <0 e Algorithms
0.6 [5] false — Ly(x) ANz #0 o Counterexample-guided

abstraction refinement (CEGAR)
o Symbolic execution (Symex)
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MUSHyperNet framework

Use predicted MUSes to guide the algorithms

Algorithm Name

e Prioritize CHCs by using predicted scores of CHCs —

Random

CEGAR ~ Score

o Use scores alone —E

R-Plus

o Combine with original prioritizing scores “SPhs

Fixed
coefficient
Rank

SymEx

m Add/subtract normalized or ranked scores with K .
Score
S-Plus

R-Minus
Random
m Randomly shift to MUS and original score “RPhs

S-Minus

Two-queue




Experimental results (Improved percentage)

MUS Best ranking function (improvement in %)
data set Number of Solved Problems Average Time

(best count) "1 SAT  UNSAT AllL Common SAT  UNSAT
Union R-Plus R-Plus R-Minus R-Plus S-Plus S-Minus Rank

Benchmark
Algorithm

Linear (0) (1.4%)  (2.4%) (1.0%) (1.3%) (19.1%) (46.5%) (31.1%)
CEGAR Single Rank R-Plus Rank  R-Plus S-Plus R-Minus Rank
(3) (3.6%) (4.0%) (82%) (1.9%) (26.6%) (57.9%) (36.3%)

Intersection R-Plus S-Plus R-Plus R-Plus S-Plus R-Minus S-Plus
(4) (41%) (08%) (9.3%) (3.1%) (27.6%) (45.0%) (0.0%)
Union Two-Q S-Plus* Random Two-QQ R-Minus R-Minus S-Plus

Linear (4) (1.0%) (0.0%) (2.0%) (0.9%) (12.7%) (30.2%) (26.5%)
SymEx Single  S-Minus* S-Plus* Random Random S-Plus Random S-Plus
(3) (0.5%) (0.0%) (2.0%) (0.8%) (12.9%) (28.4%) (17.6%)

Intersection S-Plus* S-Plus¥ S-Plus* S-Plus Score Random R-Plus
5)  (1.0%) (0.0%) (2.0%) (1.3%) (9.5%) (28.4%) (35.8%)
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Experimental results (Improved percentage)

MUS Best ranking function (improvement in %)
Benchmark -
Al data set Number of Solved Problems Average Time
(best count) “pypa]  SAT  UNSAT Al Common SAT  UNSAT
N Union S-Plus S-Plus S-Plus* S-Plus R-Minus Rank S-Plus
LW (7) (0.5%) (0.8%) (0.0%) (7.1%) (20.8%) (53.5%) (19.4%)
Linear
CEGAR Single R-Plus R-Plus R-Plus* R-Plus S-Plus R-Minus R-Minus
(1) (0.2%) (0.4%)  (0.0%) (6.6%) (18.4%) (52.8%) (14.2%)
Intersection R-Plus*  S-Plus  S-Plus* R-Plus R-Plus Rank S-Plus
(1) (0.0%) (0.5%) _ (0.0%) (5.9%) (20.3%) (45.8%) (16.8%)
i Union Two-Q S-Minus* Random Two-Q R-Minus Score R-Plus
o (6) (6.1%) (1.6%) (12.3%) (13.3%) (7.3%) (5.1%) (19.9%)
Linear
SymEx Single Two-Q Score Two-Q Two-Q Rank R-Minus Two-Q

(3) (6.1%) (1.6%) (12.9%) (12.4%) (-2.2%) (0.2%) (11.2%)
Intersection Two-Q S-Plus Two-Q Two-Q S-Minus Two-Q S-Plus
(3) (6.1%) (1.6%) (12.9%) (12.7%) (0.6%) 1.7%)  (5.4%)




Visualize CHCs with dependency graph

< true Start
— Ll(ill) ANx >0 ?[1] true
— Ly(x) Nz =z —1 B8]z’ =z —1
— Li(z)ANx <0 Ly
— L3(z) ANz #0 [2]W<0
Lz L3
\ 5] 2 # 0

false

83



MUSes of CHCs

1] Ly (x — true

{[1], [4], [5]} is the only MUSes
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MUSes of CHCs

1] Ly () — true

[2] LQ(ZU) — Ll(ib) ANx >0

8] Li(z') « Lo(z)ANz' =z —1
4] Ls(x) — Li(z) ANz <0

5| false «— Lay(z) Nz #0

e Algorithms
o Counterexample-guided
abstraction refinement (CEGAR)
o Symbolic execution (Symex)

85



MUSes of CHCs

Score
0.8 [1] Li(z) — true
0.2 (2] La(z) — Li(x) ANz >0
0.1 [3]Li(z") <+ Ly(z)hnz'=z-1
0.75 [4] Ls(x) — Li(z) Nz <0
0.6 [5] false «— Lay(z) Nz #0
e Algorithms

o Counterexample-guided
abstraction refinement (CEGAR)
o Symbolic execution (Symex)
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Represent CHCs by graphs

I:I Node
Label Clauses < Ppenenae
1 1] Lq(x) — true z] 10
0 2] Lz(iB) — Ll(w) ANx >0 /}{
0 3| Li(z') <+ Ly(z)AN2' =z —1 Ly =
1 4] Ls(x) — Li(z) ANz <0 # 9]
1 5] false < Ly(z) Nz #0




Represent CHCs by graphs

I:I Node
<> Hyper-edge

Label Clauses
1 1] Lq(x) — true
0 2 Lz(iB) <—L1( )/\CB>O
0 3| Li(z") <+ Ly(z)Na' =2z —1
1 [4] L3(:B) — Ll(.’IZ) ANxr <0
1 5] false < Ly(z) Nz #0
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Experimental

results

Benchmark Ranking

Number of Solved Problems
(improvement %)

Average Time
(improvement %)

> 5 Total SAT UNSAT All " Common  SAT UNSAT
Algorithm Function
Default 432 250 182 131.12  42.05 43.34 40.28
N Rand 425 243 182 143.42 3427 34.84 38.75
L};?;;r Ancom 1.6%) (-2.8%)  (0.0%) (-9.4%) (-11.1%) (19.6%) (3.8%)
CEGAR R-Plus 432 250 182 12229 31.74 28.59 37.82
(0.0%) (0.0%) (0.0%) (6.7%) (17.8%) (34.0%) (6.1%)
T O 240 177 154.07 26.20 21.46  32.51
(-3.5%) (-4.0%) (-2.7%) (-17.5%) (20.8%) (50.5%) (19.3%)
S Plus 434 252 182 121.75 34.64 35.97 39.10
(0.5%) (0.8%) (0.0%) (7.1%) (13.1%) (17.0%) (2.9%)
S Minus . 221 242 179 149.02  31.76 26.33 3895
(-2.5%) (-3.2%) (-1.6%) (-13.7%) (-2.0%) (39.2%) (3.3%)
Portfolio . 339 253 182 113.49 28.24 30.57 31.75
(0.7%) (1.2%) (0.0%) (13.4%) (29.1%) (29.5%) (21.2%)
Default 342 187 155 343.82  28.39 29.05 27.59
Risideii |, 302 188 174 301.90 32.67 36.24 41.83
Non (5.8%) (0.5%) (12.3%) (12.2%) (-15.1%) (-24.8%) (-51.6%)
Linear R-Plus 339 190 149 357.18  27.88 47.71 22.10
SymEx (-0.9%) (1.6%) (-3.9%) (-3.9%) (0.3%) (-64.2%) (19.9%)
R-Minus 361 189 172 299.86 26.35  37.68 27.98
(5.6%) (1.1%) (11.0%) (12.8%) (7.3%) (-29.7%) (-1.4%)
S Plus 340 189 151 352.84  29.04 41.41 24.54
7 (-0.6%) (1.1%) (-2.6%) (-2.6%) (-0.3%) (-42.5%) (11.1%)
S Minus 362 190 172 303.65  28.62 44.11 37.95
(5.8%) (1.6%) (11.0%) (11.7%) (-0.4%) (-51.8%) (-37.5%)
— 363 189 174 297.93  30.15 41.14 32.51
(6.1%) (1.1%) (12.3%) (13.3%) (-6.2%) (-41.6%) (-17.8%)
Portfolic 250 191 175 288.85  22.29 42.42 26.75
(7.0%) (2.1%) (12.9%) (16.0%) (21.4%) (-46.0%) (3.0%)
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Experimental results

At least one setting has
improvement

Benchmark Ranking

Number of Solved Problems
(improvement %)

Average Time
(improvement %)

> 5 Total SAT UNSAT All Common  SAT UNSAT
Algorithm Function
Default 222 125 97 519.38  25.77 38.97 8.77
Random 221 124 97 523.58  27.49 37.05 15.85
Linear ‘ (-0.5%) (-0.8%) (0.0%) (-0.8%) (-29.5%) (4.9%) (-80.7%)
CEGAR R.Plus | 225 128 97 512.41 21.65 42.89 11.99
(1.4%) (2.4%) (0.0%) (1.3%) (16.0%) (-10.1%) (-36.7%)
R-Minus 220 122 98 526.08  18.02 30.93 21.60
(-0.9%) (-2.4%) (1.0%) (-1.3%) (-24.4%) (20.6%) (-146.3%)
S Plus 222 125 97 517.43 20.92  34.13 7.32
7 (0.0%) (0.0%) (0.0%) (0.4%) (19.1%) (12.4%) (16.5%)
S Minus 219 122 97 522.97 12,56  20.86 9.81
(-1.4%) (-2.4%) (0.0%) (-0.7%) (2.4%) (46.5%) (-11.9%)
Portfolio 222 130 99 503.16  18.28 45.67 19.94
(3.2%) (4.0%) (2.1%) (3.1%) (29.1%) (-17.2%) (-127.4%)
Default 200 101 99 590.68  33.16 55.42 10.44
201 100 101 586.12  30.08 39.69 20.95
Random
Tifead (0.5%) (-1.0%) (2.0%) (0.8%) (-8.5%) (28.4%) (-100.7%)
SymEx R-Plus 192 101 91 617.60  38.59 52.87 21.99
‘ (-4.0%) (0.0%) (-8.1%) (-4.6%) (-10.9%) (4.6%) (-110.6%)
R:Miiiis 200 100 100 586.24 24.67  38.69 10.60
(0.0%) (-1.0%) (1.0%) (0.8%) (12.7%) (30.2%) (-1.5%)
S Plus 198 101 97 595.02  30.22 50.97 7.67
(-1.0%) (0.0%) (-2.0%) (-0.7%) (11.6%) (8.0%) (26.5%)
S Minus |, 201 101 100 586.35  30.64 50.57 10.65
(0.5%) (0.0%) (1.0%) (0.7%) (7.8%) (8.8%) (-2.0%)
Two-queue 20 101 101 585.58 35.11 49.94 20.14
(1.0%) (0.0%) (2.0%) (0.9%) (-5.9%) (9.9%) (-92.9%)
Portfolio 296 101 105 569.1  25.79 44.58 10.16
(3%) (0.0%) (6.1%) (3.7%) (22.2%) (19.6%) (2.6%)
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Minimal Unsatisfiable Subsets (MUSes) of CHCs

) — true

) «— Li(z) ANz >0

') <+ Lyz)hz' =21

) — Li(z) Nz <0 L3(z) < true ANz <0
(

5] false — Ly(z) Nx #0 \fl \ )
alse—x < 0Axz#0
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