Learning to Guide Automated Reasoning:
A GNN=Based Framework

6 May 2025
Doctoral Student Chencheng Liang
Supervisors Philipp Riimmer, Parosh Aziz Abdulla, Yi Wang
Opponent Stephan Schulz DHBW Stuttgart
Jury Members Konstantin Korovin University of Manchester

Mihaela Sighireanu ENS Paris-Saclay
Christian Rohner Uppsala University
Tobias Wrigstad Uppsala University

Symbolic Methods

Q Background
1 Applications
> Verify complex systems.
> Theorem proving.

> Constraint solving in optimization.

1 Symbolic expressions effectively encode large sets of states and transitions.

el 2y

w)

Symbolic Methods

Q Fundamental techniques in automated reasoning.
1 Deductive reasoning, term rewriting, constraint solving, etc.

Q Approaches
1 Automated Theorem Provers (ATPs).
" Boolean Satisfiability (SAT)/Satisfiability Modulo Theories (SMT) solvers.
1 Constrained Horn Clause (CHC) solvers.

Motivating Examples (Program Verification)

Wl;k_:(ac > 0)4
r=x—1

}

assert(z # 0)

01:
: Lg(a}) <—L1()/\CE>0
: Li(z") + Ly(z) N2’ =z —1
: Lg(w) (—Ll()/\ZB<0
: false < L3(z) ANz =0

Li(x) < true

Motivating Examples (Program Verification)

ngle_:(ac > 0)4
r=x—1

}

assert(z # 0)

: Li(z) < true

: Ly(x) < Li(x) ANz >0

: Li(z") + Ly(z) N2’ =z —1
:Lg(w) (—Ll()/\$<0

: false < L3(z) ANz =0

Proof rules

Motivating Examples

C1: Li(z) < true
C2 : Lz(a}) — Ll()
C3 : Ll(il?,) (—LQ(CL') r=z—1
04 : L3(£U) — Ll(CIZ)
Cs: false < Li(z) Nz = —0

C¢:Ls <+ trueNz <0

C1 Oy

Proof rules

Motivating Examples

C1: Li(z) < true
C2Z Lz(a}) — Ll()

C3: Li(z') < La(z) Nz’ =z —1
04 : L3(£U) — Ll(CIZ)

Cs: false < Li(z) Nz = —0

C¢:Ls<+trueNz <0

\C7zfalse<—:c§0/\a:20

false < true

Cs Cg

Proof rules

Motivating Examples

C1: Li(z) < true

C¢:Ls <+ trueNz <0

. |
\C7zfalse<—:c§0/\a::0

false < true

Proof rules

Key challenge: pick correct clauses

Motivating Examples (Theorem Proving)

0 Need heuristics to pick clauses
~ Predefined features [1]:

> Clause age.

> Clause size.

Proof rules
> Relevance to the proof goal.

[1] S. Schulz and M. Mohrmann, “Performance of clause selection heuristics for saturation-based theorem
proving,”2016.

Motivating Examples (Theorem Proving)

0 Need heuristics to pick clauses
~ Predefined features [1]:

> Clause age.

> Clause size.

> Relevance to the proof goal.

7 Learned abstract features:

> Usually non-linear functions.

> Data-driven.

Proof rules

[1] S. Schulz and M. Mohrmann, “Performance of clause selection heuristics for saturation-based theorem

proving,”2016.

Motivating Examples (Theorem Proving)

0 Need heuristics to pick clauses
Predefined features [I]:
> Clause age.
> Clause size.

> Relevance to the proof goal.

Learned abstract features:

> Usually non-linear functions.

> Data-driven.

0 Deepire [2] uses recursive neural networks to classify the clauses based on their

derivation history.

[2] M. Suda, “Vampire with a brain is a good ITP hammer,” 2021.

Proof rules

Motivating Examples (Theorem Proving)

0 Need heuristics to pick clauses
Predefined features [I]:
> Clause age.
> Clause size.

> Relevance to the proof goal.

Learned abstract features:

> Usually non-linear functions.

> Data-driven.

0 ENIGMA [3] uses both Gradient Boosting Decision Trees (GBDTs) and Graph
Neural Networks (GNNs) to select the clauses.

Proof rules

[3] Jakub’uv, K. Chvalovsky, M. OI$ak, B. Piotrowski, M. Suda, and J. Urban, “ENIGMA anonymous:

Symbol-independent inference guiding machine (system description),” 2020.

Motivating Examples (SAT Solving)

a Clauses

(21 V xyg)A
(x3 VT4V T5)A
(Z3V Ty V Ty)

Conflict

Motivating Examples (SAT Solving)

a Clauses

(21 V xyg)A
(x3 VT4V T5)A
(Z3V Ty V Ty)

Conflict

Motivating Examples (SAT Solving)

a Clauses

(21 V xyg)A
(x3 VT4V T5)A
(Z3V Ty V Ty)

Conflict

Motivating Examples (SAT Solving)

a Clauses

(1 V zg)A
($3 VgV 51_35)/\
(Z3V T2V ZTy)

Q SAT Solver
1 Selecting an variable for branching.
~ Which branch to go.
7 Deciding when to restart.

Conflict

Key challenge: find the correct path

Motivating Examples (SAT Solving)

Q Conflict-Driven Clause Learning (CDCL)-based SAT
solving
"1 Selecting an variable for branching.

' NeuroSAT [4] periodically resets Exponential Variable - é
State-Independent Decaying Sum (EVSIDS) scores based @

. . . Conflict
on the predictions of a message-passing neural network.

[4] D. Selsam and N. Bjagrner, “Guiding high-performance SAT solvers with unsat-core predictions,” 2019. 7

Motivating Examples (SAT Solving)

Q Conflict-Driven Clause Learning (CDCL)-based SAT
solving

1 Deciding when to restart.

d Authors in [5] propose a data-driving-based restart policy

by analyzing the history of previously learned clauses. K ©
Conflict

[5] J. H. Liang, C. Oh, M. Mathew, C. Thomas, C. Li, and V. Ganesh, “Machine learning-based restart policy for
CDCL SAT solvers,” 2018.

Summary of Motivating Examples

Proof rules

Conflict

0 Nearly all approaches of symbolic methods incorporate multiple heuristic-driven decision
processes.

Summary of Motivating Examples

Proof rules

Conflict

0 Nearly all approaches of symbolic methods incorporate multiple heuristic-driven decision
processes.

0 Deep-learning guided heuristics show promising results.

20

Summary of Motivating Examples

Proof rules

Conflict

0 Nearly all approaches of symbolic methods incorporate multiple heuristic-driven decision
processes.

0 Deep-learning guided heuristics show promising results.

O Each deep-learning guided heuristic is highly customized.

21

Summary of Motivating Examples

Proof rules

Conflict

Can we generalize the deep-learning based guiding systematically, so that
the decision processes can be improved within a unified framework?

22

List of papers

U000

| Exploring Representation of Horn Clauses Using GNNs. Chencheng Liang, Philipp RUmmer, Marc
Brockschmidt. /n Proceedings of 8th Workshop on Practical Aspects of Automated Reasoning (PAAR), 2022.

I Boosting Constrained Horn Solving by Unsat Core Learning. Parosh Aziz Abdulla, Chencheng Liang,
Philipp RUmmer. In Proceedings of 25th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), 2024.

Il Guiding Word Equation Solving Using Graph Neural Networks. Parosh Aziz Abdulla, Mohamed Faouzi
Atig, Julie Cailler, Chencheng Liang, Philipp RUmmer. In Proceedings of 22nd International Symposium on
Automated Technology for Verification and Analysis (ATVA), 2024.

IV When GNNs Met a Word Equations Solver: Learning to Rank Equations. Parosh Aziz Abdulla,
Mohamed Faouzi Atig, Julie Cailler, Chencheng Liang, Philipp Rummer. Under Submission, 2025.

Deep-learning based framework

Instance |: Constrained Horn clauses (CHCs) solving (paper | and Il)
Instance 2:Word equation solving (paper Il and V)

Conclusion and future works

23

Deep Learning-Based Framework (Syntactic Structure)

2 3) 4 q G h
—~> Solved 4 rap
Solvers% TraceL > representations
Unknown with labels
Train
v 6

Model with GNNs

—————————————————— L——————Query————————————————————————

Training stage

Problems

Training data

Prediction stage

Problems

Evaluation data

A
A

8 9
Solver O > Graph 3

Representation

—— —_——_——_— —_——_—— — —— —y

24

Deep Learning-Based Framework

| Training stage

|
| —CD Graph 3 |
| Problems ph |
representations |

| .
| Training data with labels |

Y 6
Model with GNNQ\

| §
i Prediction stage Guide

|

|
oo D s ® D e®
: Problems Solver 6 Graph) ? Answer :
| Representations |
| |
| |

A

A

Evaluation data

0 RQI:What are good encodings of symbolic decision processes as training tasks?

Deep Learning-Based Framework

| Training stage RQ2 |

| —® Graph |

| Problems pn |
representations |

| .

| Training data with labels |

v 6
Model with GNNQ\

| §
i Prediction stage Guide

|

|
oD s ® D e®
: Problems Solver e Graph) ? Answer :
| Representations |
| |
| |

A

A

Evaluation data

0 RQI:What are good encodings of symbolic decision processes as training tasks?
0 RQ2:What is the most effective format for representing formulas in deep learning?

Deep Learning-Based Framework

| Training stage RQ2 !

| —® Graph |

| Problems > ph |
representations |

| .

| Training data with labels |

|
| Prediction stage

|

|
oD s ® D e®
: Problems Solver 6 Graph) ? Answer :
| Representations |
| |
| |

A

A

Evaluation data

0 RQI:What are good encodings of symbolic decision processes as training tasks?
0 RQ2:What is the most effective format for representing formulas in deep learning?
0 RQ3:Which deep learning technique is best suited for feature extraction from formulas?

Deep Learning-Based Framework

| Training stage RQ2 !

| —® Graph |

| Problems > ph |
representations |

| .

| Training data with labels |

| _
| Prediction stage

g |

|

| —(7) 9 @ |
: Problems » Solver %—» Graph) ? Answer :
| Representations |
| |
| |

A

Evaluation data

RQI:What are good encodings of symbolic decision processes as training tasks?
RQ2:What is the most effective format for representing formulas in deep learning?
RQ3:Which deep learning technique is best suited for feature extraction from formulas?

O 0O 0 O

RQ4:What are the methods for integrating the trained model into algorithms?

Deep Learning-Based Framework (Instances)

Trace representation

_ Unknown @ with labels
Training data

@ 0 Train
Model with GNNs #

ittty . ey F s Query----------"-----"-------- J
1 Prediction stage Guide |
@ 9]
| Problems > Solver e Graph . Answer 1
| Representations |
: Evaluation data :

0 Guide Constrained Horn Clauses (CHCs) solving (Paper I and 1)

e S
Training stage RQ2 ‘
D ——® (z) ® @) Q =/ |
Problems ——{ Solvers s]‘

|

F(0,0) < true
F(1,1) < true
F(z,y1 +y2) < Fla —1,y1) NF(x —2,y2) Nx > 1
false < F(z,y) Ny <0

29

Deep Learning-Based Framework (Instances)

o m — — — = = = = — -
| Training stage e @ 5 !
I CD 2 Y Graph |

% Solved 0 P |
| Problems ——| Solvers _ Trace representations :
| - Rat> with labels ‘
| Training data

@ 0 Train
Model with GNNs #

il s N R Query----~-----~--------------~
1 Prediction stage Guide

|

|

@) 9 i
Problems > Solver e Graph . Answer 1
Representations |

Evaluation data :

0 Guide word equation solving (Paper Il and IV)

XaY =YbX N XabY = YbaX

Constrained Horn Clauses (CHCs)

a2 A CHC is a formula in the format

L(f) < Ll(fl)/\. .. /\Ln(t_n) A @Y

where t; are terms,
L,Lq,...,L, are relation symbols,

L;(t;) is an atom,
® is a constraint in the background theory T.

A CHC system is satisfiable if there exists a interpretation such that every clause in the

system evaluates to true.

Paper I and II

31

CHGCs (Example)

0 Fibonacci function logic expression

fib(0) =0
fib(1) =1
fib(n) = fib(n — 1) + fib(n — 2), forn > 1

Q Its CHC encoding:

F(0,0) < true
F(1,1) < true
F(xz,y1 +y2) « Flx —1,y1) NF(x —2,y2) Nx > 1

Paper I and II

32

CHGCs (Example)

2 An assertions such as “the Fibonacci function does not return negative numbers”
can be encoded as:

false < F(x,y) Ny <0

Where false is a predicate representing an assertion violation.

Paper I and II

33

CHGCs (Example)

2 An assertions such as “the Fibonacci function does not return negative numbers”
can be encoded as:

false < F(x,y) Ny <0
Where false is a predicate representing an assertion violation.
F(0,0) < true
F(1,1) < true

F(x,y1 +y2) < Flx —1L,y1) NF(x —2,y2) Nx > 1
false < F(x,y) ANy <0

Paper I and II

34

Satisfiability of CHCs (Example)

0 CHC encoding of Fibonacci function with an assertion:

F(0,0) < true
F(1,1) « true
F(z,y1 +ys2) « Fla —1Ly1) NF(z —2,y2) ANz > 1
false +— F(z,y) Ny <0

0 Consider a model:
Flx,y)=x>0Ay >0

Replacing F with this formula will make all clauses valid which means the system is
satisfiable (SAT).

Paper I and II

35

CHC Solver

Q Algorithms implemented in CHC solvers
~ Counterexample-Guided Abstraction Refinement (CEGAR).
1 Symbolic execution.

Paper I and II

36

CHC Solver

Q Algorithms implemented in CHC solvers
~ Counterexample-Guided Abstraction Refinement (CEGAR).
1 Symbolic execution.

Q Learning to tank clauses before solving

Paper I and II

Proof rules

37

Rank CHCs to Guide the Solving

| Training stage RQ2 |

| 4® Graph |

| Problems pn |
representations |

| .

| Training data with labels |

@ o Train
Model with GNNs #

——————————————— L——————Query————————————————————————
| Prediction stage Guide :
: :7: 9 Graph 3 @ |
| Problems > Solver . Answer [
| Representations |
: Evaluation data :

O RQI:Train task.

0 RQ?2: Graph representation.
Q RQ3: GNN models.

0 RQ4: Integrating methods.

Paper I and II

Rank CHCs to Guide the Solving

| Training stage

| 4@

Problems

Training data

RQ2 !
5) |
Graph |
representations |
with labels |
@ o Train
Model with GNNs #

——————————————— L——————Query————————————————————————
| Prediction stage Guide :
: :7: 9 Graph 3 @ |
| Problems > Solver . Answer [
| Representations |
: Evaluation data :

0 Answer to RQI (train task):
0 Learn from Minimal Unsatisfiable Subset (MUS).

Paper I and II

Rank CHCs to Guide the Solving

Q Example of MUS

C1: Li(z) < true
C2 : LQ(ZL’) — Ll(m
C3 : Ll(il?,) < Lz(
04 : Lg(w) — Ll(CB
Cs : false < Ls(

C¢:Ls<+trueNz <0

\C7zfalse<—:1:§0/\a::0
|

false < true

Paper I and II

40

Rank CHCs to Guide the Solving

Q Example of MUS Proof rules

C1: Li(z) < true
C2 : LQ(ZL’) — Ll(il?
C3 : Ll(ZE,) < Lg(
04 : Lg(m) — Ll(CB
Cs : false < Ls(

C¢:Ls<+trueNz <0

\C7zfalse<—:c§0/\a::0
|

false < true

4]
Paper I and II

Rank CHCs to Guide the Solving

Q Example of MUS Proof rules

C1: Li(z) < true
Lol Lo lo A e >0
—%@H—ﬁw ! — 1

04 : L3(£U) < Ll(CIZ) Nx < 0

Cs: false < Ls(x) ANz =0

C¢:Ls<+trueNz <0

T fal l <0 0
7 Jatse<—x < UAxT =
{C1,C4,C5} is a MUS. |

false < true

42
Paper I and II

Rank CHCs to Guide the Solving

Q Example of MUS Proof rules

C1: Li(z) < true
—Gz:—L-z-éﬁS;—(—LTe%g—
—Cs+ Ly ~<—Lolay Ao —ap—1

04 : Lg(ilf) — Ll(CE) Ne <0

Cs: false <+ L3(x) Nz =

C¢:Ls <+ trueNz <0

T fal l <0 0
7 Jatse<—x < UAxT =
{C1,C4,C5} is a MUS. |

false < true

Let ¢ be a set of formulas such that ¢ is unsatisfiable. A subset ¢’ C ¢is called a
MUS if ¢’ is unsatisfiable and for all proper subset ¢” C ¢’ , ¢" is satisfiable.

Paper I and II

43

Rank CHCs to Guide the Solving

| Training stage

|
| 4@) Graph :
| Problems representations |
| .
| Training data with labels |

| Prediction stage i :
) ?39 9 ©
Problems > Solver Graph 3 Answer :

|

|

|

|
: Representation
|
|

Evaluation data

0 Answer to RQI (train task):
0 Belongs to MUS or not.

Paper I and II

Rank CHCs to Guide the Solving

| Training stage RQ2 |

| 4® Graph |

| Problems pn |
representations |

| .

| Training data with labels |

: Prediction stage i :
| |
:7: 9 Graph 9 @ :

S I

|

|

: Problems > Solver .

| Representation
|

|

Evaluation data

0 Answer to RQ2 (graph representation):
' Syntactic structure.
'+ Control-flow and data-flow.

Paper I and II

Rank CHCs to Guide the Solving (Graph Representation)

Constraint graph (CG)

CHC: L(z,y,n) + L(z",¢',n YAz #0ANz=2"—-1Ay=9y —1

Predicate layer

L_
rS81 |

Paper I and II

46

Rank CHCs to Guide the Solving (Graph Representation)

CHC: L(z,y,n) < L'(z',y',n YAz #£0AhNz=2"—1Ay=9" -1

Control- and data- flow I
hypergraph (CDHG) r81

CFHE

uarded CFHE Claus

CFHE
1

LI
D)

47
Paper I and II

Control- and Data-Flow Hypergraph (CDHG)

guarded CFHE Clause 0

guarded CFHE Clause 1

guarded CFHE Clause 4 guarded CFHE Clause 5

m

guarded CFHE Clause 3

E Clause 6
[FHE

Paper I and II

Control- and Data-Flow Hypergraph (CDHG)

st
— .
—
—
/ 2 prue
P
T e
hor 1
oree
- \ \
FHE larg DFHE DFHE

b e

Paper I and II

Rank CHCs to Guide the Solving

| Training stage

| 4@

Problems

Training data

RQ2 !
5) |
Graph |
representations |
with labels |
@ o Train
Model with GNNs #

——————————————— L——————Query————————————————————————
| Prediction stage Guide :
: :7: 9 Graph 3 @ |
| Problems > Solver . Answer [
| Representations |
: Evaluation data :

0 Answer to RQ3 (GNN model):
0 Relational Hyper-Graph Neural Network (R-HyGNN).

Paper I and II

Relational Hyper-Graph Neural Network (R-HyGNN)

The updating rule for node representation in time step ¢:
hf} — ReLU(ZTGR ZpEPT ZeEE;’p W:,p) ’ H{hz_l‘u S 6}7

where ||{-} denotes concatenation of elements in a set,
R is the set of edge types,
P, is the set of node position under edge type r,

W} , denotes learnable parameters,

E? is the set of hyperedges.

Paper I and II

edge type_2
(position_3)

N edge_type 0 edge_type 0
_(position 1) (self-loop)
; WrO,pl
) &
edge_type_1
M EE R (position_1)
= = = - er ,pl I I I I [
mEnEnEn edge_type 1
NI (binary edge)
= = = edge_type_1 ® @
posmon 2) @)
: : WT1p2 II (1) ®
x @ &
— [1.2101.3][1,4]
‘m) edge_type_2 [1,5106,117,1]
@ (position_1)
2 ReLU
—_ @

edge_type 2
(ternary edge)

@
X e

® ©

[1,7,8][9,10,1]

51

Rank CHCs to Guide the Solving

F———m— —mm m — —m — — —— — — ——— — ——— o — == = = = — -

| Training stage RQ2 |

| 4® Graph |

| Problems pn |
representations |

| .

| Training data with labels |

: Prediction stage i :
| |
:7: 9 Graph 9 @ :

S I

|

|

: Problems > Solver .

| Representation
|

|

Evaluation data

0 Answer to RQ4 (integrating methods):
1 Use prediction alone.
1 Combine with existing heuristics.
~+ Combine with random clause selection.

Paper I and II

Experimental Results (Improved Percentage)

0 Evaluated in CHC solver Eldarica [6].

Q Using CHC-COMP dataset.
MUS Best ranking function (improvement in %)
Benchmark . -
Agerithn data set Number of Solved Problems Average Time
(best count) Total SAT UNSAT All Common SAT UNSAT
Union R-Plus R-Plus |R-Minus| R-Plus S-Plus S-Minus Rank
Linear (0) (1.4%) (2.4%) (1.0%) | (1.3%) (19.1%) (46.5%) (31.1%)
CEGAR Single Rank R-Plus Rank | R-Plus S-Plus R-Minus Rank
(3) (3.6%) (4.0%) | (82%) | (1.9%) (26.6%) (57.9%) (36.3%)
Intersection R-Plus S-Plus |R-Plus | R-Plus S-Plus R-Minus S-Plus
(4) (4.1%) (0.8%) (9.3%) | (3.1%) (27.6%) (45.0%) (0.0%)
Union Two-Q S-Plus* Random| Two-QQ R-Minus R-Minus S-Plus
Linear (4) (1.0%) (0.0%) |(2.0%) | (0.9%) (12.7%) (30.2%) (26.5%)
SymEx Single S-Minus* S-Plus* Random|Random S-Plus Random S-Plus
(3) (0.5%) (0.0%) | (2.0%) | (0.8%) (12.9%) (28.4%) (17.6%)
Intersection S-Plus* S-Plus* |S-Plus*| S-Plus Score = Random R-Plus
(5) (1.0%) (0.0%) |(2.0%) | (1.3%) (9.5%) (28.4%) (35.8%)

[6] H. Hojjat and P. Ruemmer, “The ELDARICA Horn solver,” 2018.

Paper I and II

Word Equations (example)

A word equation:

XabY = YbaX

where a and b are letters,
XY, and Z are variables ranging over strings of these letters.

Paper III and IV

54

Satisfiability of a Word Equation

A word equation:

XabY = YbaX

where a and b are letters,
XY, and Z are variables ranging over strings of these letters.

If there exists a substitution of the variables with strings over the
letters that makes the equation hold, then the equation is satisfiable.

Paper III and IV

55

Satisfiability of a Word Equation

A word equation:

XabY = YbaX

where a and b are letters,
XY, and Z are variables ranging over strings of these letters.

If there exists a substitution of the variables with strings over the
letters that makes the equation hold, then the equation is satisfiable.

SAT or UNSAT?

Paper III and IV

56

Satisfiability of a Word Equation

A word equation:

XabY = YbaX

where a and b are letters,
XY, and Z are variables ranging over strings of these letters.

If there exists a substitution of the variables with strings over the
letters that makes the equation hold, then the equation is satisfiable.

X=0bY =c¢
bab = bab

Paper III and IV

57

Word Equations

0 Important in modeling string constraints in verification tasks .
1 E.g.,Validate user inputs, ensuring correct string manipulations.

Paper III and IV

58

Word Equations

0 Important in modeling string constraints in verification tasks.
1 E.g.,Validate user inputs, ensuring correct string manipulations.

a Difficult to solve.

1 Decision procedures such as [6] and [7] have no implementation.

"~ Practical algorithms are incomplete.

[6] Makanin, G.S.: The problem of solvability of equations in a free semigroup. 1977
[7] Plandowski, W.: Satisfiability of word equations with constants is in pspace. 1999.

Paper III and IV

59

Solving a Word Equation System

Q Split Algorithm
"' Based on Levi’s lemma (Nielsen transformation in group theory).

Paper III and IV

60

Split Algorithm (Branch Process)

XbY =bXXZ
X —e€ X — bX'
bY =bZ X'bY =bX'bX'Z

Z—YZ / "
Y Z o 722 be
€E=¢€ Y =¢ e=2' bY = bbZ X"bY = bX"0bX"Z

l l l Yi—e Y — bY’ X" :N”:bx'"

SAT SAT SAT UNSAT

Paper III and IV

61

Split Algorithm (Branch Process)

XbY =bXXZ
R, X—e X — bX'
bY =bZ X'bY =bX'bX'Z
/ X' — € / "
Rs, Rs Y—Z Vi 7y Z—=YZ R, Mb}(
€=c¢€ Y=g e=2Z' bY = bbZ X"bY = bX"0bX"Z
Y Y’ n_ "n_ m
Ry, Ry le,Rl l Rs3, R, l Rs, Ry Yl—)AD—)b R, X /\{(bX
SAT SAT SAT UNSAT
X-u=a-vAQ X-u=Y -vA¢
R7 7 Ry 7 7
(X — € X —a-X] [X — Y] ‘ X =Y Y] | [V X X
/
u=a-vANd | X -u=vA0d uU=vA¢ Y u=vAd | u=X"vAd

Paper III and IV

62

Calculus

X=€eNo

true e=€eN¢ By a-u=eNo
Fa gt L b [X €] R4 —gNsaT
¢
with X € I'and a € X.
(a) Simplification rules
a-u=a-vAo a-u=b-vAo
R:
T u=vAo Rs —gNsar

with a, b two different letters from X.

(b) Letter-letter rules

X-u=a-vA¢

Br—m=5d Xsa X
u=a-vAo¢ X u=vA¢
with X’ a fresh element of I.
(c) Variable-letter rules
R X u=Y vA¢
T X~ Y] XY Y] | =X -X]
u=vA¢ Y u=vAd | u=X"-vAo

with X # Y and X', Y’ fresh elements of I'.

X u=X-vA¢

Ry u=vA¢

(d) Variable-variable rules

63

Split Algorithm (Branch Process)

XbY =bXXZ
R, X—e X — bX'
bY =bZ X'bY =bX'bX'Z
/ X' — € / "
R Rs{ Y—Z vl gpr~ZYZ R, be
E=¢€ Y=g e=2Z' bY = bbZ X"bY = bX"0bX"Z
/ no__ "o "
Ro. R l Rs. Ry l Rs. Ry l Rs, Ry Y HNH bY R, X _N =bX
SAT SAT SAT UNSAT e . e

Q If there is one branch SAT, then the word equation is SAT.
Q If all branches are UNSAT, then the word equation is UNSAT.

64
Paper III and IV

Split Algorithm (Branch Process)

XbY =bXXZ
R, X—e X — bX'
bY =bZ X'bY =bX'bX'Z
/ X' — € / "
R Rs{ Y—Z vl gpr~ZYZ R, be
€=c¢€ Y=g e=2Z' bY = bbZ X"bY = bX"0bX"Z
/ no__ "o "
Ro. R l Rs. Ry l Rs. Ry l Rs, Ry Y HN;—) bY R, X _N =bX
SAT SAT SAT UNSAT e .. e

Q Branching significantly affects the performance.

65
Paper III and IV

Select Branches to Guide the Solving

| Training stage

| 4@

Problems

RQ2 '

5) 1

Graph |

representations |

— with labels |
Training data

@ o Train
Model with GNNs #

——————————————— L——————Query————————————————————————
| Prediction stage Guide :
: :7: 9 Graph 3 @ |
| Problems > Solver . Answer [
| Representations |
: Evaluation data :

O RQI:Train task.

0 RQ?2: Graph representation.
Q RQ3: GNN models.

0 RQ4: Integrating methods.

Paper III and IV

Select Branches to Guide the Solving

Training stage
RO

Problems

Training data

Prediction stage

Problems

Evaluation data

Representation

Graph
representations
with labels
9 10
9 Giraph S Answer

0 Answer to RQI (train task):

U

Learn from shortest path to SAT.

Paper 11

67

Select Branches to Guide the Solving (Train Data Collection)

Variable-Variable

Xab=YaZ

X=YVO =XV1 =Y
Variable-Letter

V0ab =aZ ab=V1aZ ab=aZ

0= aV2 1 =""\V1l=aV8 Z="" \Z=bVl1

Variable-Letter

Z= = ZVA[Z=V2V5\V2=Z ="" \Z=bV9 8 = "" \V8= bV10 vili=""

e s Wiioon il
""\V6= bV7 ‘ ‘

SAT equation

=gt <=

UNSAT equation

SAT 6

68
Paper 111

Select Branches to Guide the Solving (Train Data Collection)

Variable-Variable

| Xab~TaZ

1 =Y

Variable-Letter
Voa = T1a
1 =""\V1l= aV8 Z="" \Z=bVll

0= aV2
V2ab=2
b = ZV4[Z= V2V5\V2=Z =" \Z=bV9 8 = "" \V8= bV10 VA =

\

Variable-Letter
e

G —
f=vs
= V3 =g 5 = ""\V5= aV6 Vg ="
\ SAT) 6 = ""\V6= bV7 ‘ ‘
SAT equation
=8 <
UNSAT equation

Paper 111

Select Branches to Guide the Solving (Train Data Collection)

Variable-Variable
=YaZ
X = XV1 =Y
Var|able Letter
Vo= of -
‘ 2 1=""\V1= aV8 Z = " \Z= bV11

Variable-Letter

8 = " \V8= bV10 Vil ="

2> @

SAT equation

<=

UNSAT equation

Paper 111

Select Branches to Guide the Solving (Train Data Collection)

Variable-Variable
Xab=YaZ
X=YVO, Y
Variable-Letter

= —ffin - 7 — un w
Variable-Letter 0= aVv2 1 V1= aVv8 Z=bVl11
Vaab=Z
7 = = ZVa[Z= V2VB\V2= Z =" \Z= bV 8 = ""\V8= bV10 V11 ="

e sy Wagein g
A= 2> @

SAT equation

- e (O

UNSAT equation

SAT .

Paper 111

Select Branches to Guide the Solving (Train Data Collection)

Variable-Variabl

xa=vel

X=YVO0 ‘
V0ab =aZ ab=V1aZ

Variable-Letter

G — = ZV4[Z= V2V5\V2=Z =

e 5 . W
V6= bV7 ‘ ‘

SAT equation

g <= (D

UNSAT equation

SAT 6 =

Paper 111

Select Branches to Guide the Solving

Training stage
D

Problems

Training data

Prediction stage

Graph
representations
with labels

Problems

Evaluation data

Graph
Representation

]

0 Answer to RQ2 (graph representation).

Paper 11

73

Select Branches to Guide the Solving (Graph Representation)

Xab=YaZ

1 O O

Equal sign Variable Letter
O D e)o‘ SN G] [GEING [t
O @I~ 7)o HO |0 DG
() (2]
ONOl I ONGEd 10Nl lOaad e O

()

Graph 1

Graph 2

Graph 3

Paper 11

Graph 4

Graph 5

74

Select Branches to Guide the Solving

| Training stage RQ2
4@) 2 e v Graph 2
Erablems s @ R
roblems Solvers Trace representations
@ with labels

Training data

@ o Train
Model with GNNs #

A P Query------------------------
1 Prediction stage Guide

A —)) 9 10
: Problems > Solver 9 Graph . Answer

| Representations

: Evaluation data

__

0 Answer to RQ3 (GNN model):

U
W
O

Graph Convolutional Network (GCN).
Graph Attention Network (GAT).
Graph Isomorphism Network (GIN).

Paper 11

75

Select Branches to Guide the Solving

Training stage
D

Problems

Training data

Prediction stage

Problems

Evaluation data

Representation

RQ2
Graph
representations
with labels
9 10
9 Giraph S Answer

0 Answer to RQ4 (integrating methods):

U
W

Use prediction alone.

Combine with random branch selection.

Paper 11

76

Experimental Results

0 Evaluated in our word equation solver, Z3, cvc5, etc.

Number of solved Average
Bench| Solver problems solving time (split number)
'SAT [UNS|JUNI[CS|[CU| SAT | UNS CS

Fixed |33 | 0 | 10 (111”5?2) ~() |as

LT
2 Random | 41 | 0 | 6 - (-) 4.2 (60)

(3879.5)

F2H0 1|0 460
in GNN 71| 0 | 27 (181&3.5) - (-) 5.1 (5)
e T R 50() | 01() [01()
Ostrich 14 | 43 | 44 40.7 (-) | 31.8 (-) | 2.5 (-)
Woorpje | 23 0 2 383 (¢)| -() 0.1 (-)
Z3 6 0 2 0.1 (-) - (-) 4.2 (-)
Z3-Noodler] 19 | 0 | O 458 ()| -(-) [4.2(-)

Paper 11

Solving Word Equation System

r Xb=bXXNe=eANX=a
Rank- ’___,—"'_'—‘ E \
—————— v
- Xb—bXX/\e—e/\X_a e=eANXb=bXXANX=a X=aNXb=bXXNe=c¢
R7iX=bX/,"' S Rr;: X =e€ ' Ry R —‘f/ \2‘7 X=c¢
Branch- i 5 Y
X'b=bX"bX' b=>b Xb=bXXANX=a e=a
r he=¢ A€E=¢ e /\aXb:baXaX' Ad=b
A bX' — Ne=a . A€= e =
Rank% : i a ,I 6: \ " A 6 ,I 6 \\ 6: \6\
i § ; " »r ; * Xb = bXX X =a p’, l \‘4 / ; *
il AX =a AXb=bXX |..||..|]..
Branchd Bry \Br Re Re iRs iRz iR4 Ry, ~Rr Ry “," ‘\¥R7 ‘:’R5 lRG ‘:rRz lR4 iRs iRz
...... UNSAT UNSAT . UNSAT .. UNSAT ..

Paper III and IV

78

Rank Word Equations to Guide the Solving

Q
Q

4
4

Training stage

a0

Problems

Training data

Model with GNNs

— = = L —————— Query
Guide

Prediction stage

RQ2 5
Graph
representations
with labels

Problems

Evaluation data

RQI:Train task.
RQ2: Graph representation.

RQ3: GNN

models.

Graph

Representation

N

RQ4: Integrating methods.

Paper IV

79

Rank Word Equations to Guide the Solving

RQ2 !
> G |
Graph |
representations |
|

| Training stage

| 4@

Problems

with labels

Training data

@ e Train
Model with GNNs #

——————————————— L——————Query————————————————————————
| Prediction stage Guide :
: :7: 0 Graph 3 @ |
| Problems > Solver . Answer [
| Representations |
: Evaluation data :

0 Answer to RQI (train task):

XaY = YbX|A XabY = YbaX

Paper IV

Rank Word Equations to Guide the Solving

Training stage

Ot

Problems

Training data

Prediction stage

Graph
representations
with labels

Problems

Evaluation data

Graph
Representation

]

0 Answer to RQI (train task):

O
0

Learn from MUSes given from other solvers.

Learn from shortest path from split algorithm.

Paper IV

8l

Rank Word Equations to Guide the Solving

Training stage
D

Problems

Training data

Prediction stage

Problems

Evaluation data

Representation

Graph
representations
with labels
9 10
9 Giraph S Answer

0 Answer to RQ2 (graph representation):

U

Global information.

Paper IV

82

Rank Word Equations (Graph Representation)

XaX =Y Naaa = XaY

1 O O & @ D

Equal Variabl Laftsr Variable Variable Letter Letter
Symbol ariable Occurence 0 Occurence 1 Occurence 0 Occurence 1
XaX =Y aaa = XaY XaX =Y

<] =
A@ oS oo
(x) 60 @°®@

Step 1 @

83

Rank Word Equations (Graph Representation)

XaX =Y Naaa = XaY

1 O O @

Equal . Lett Variable
Symbol Variable eter Occurence 0

W) @D @D

Variable
Occurence 1

Letter
Occurence 0

Letter
Occurence 1

XaX =Y aaa = XaY
[= =
(x) OO

84

Rank Word Equations to Guide the Solving

| Training stage

H_ ®
Model with GNNs

= == L —————— Query
Guide

o)

Problems

Training data

|
i Prediction stage

Graph
representation
with labels

|

Problems

Evaluation data

Graph

Representation

]

Q Answer to RQ3 (GNN model):

U
W
U

GCN.

GCN+GIN.

GNN

filters.

Paper IV

85

Rank Word Equations to Guide the Solving

RQ2 !
5) |
Graph |
representations |
with labels |
@ o Train
Model with GNNs #

——————————————— L——————Query————————————————————————
| Prediction stage Guide :
: :7: 9 Graph 3 @ |
| Problems > Solver . Answer [
| Representations |
: Evaluation data :

0 Answer to RQ4 (integrating method):
1 Different frequency (e.g., one-short).

| Training stage

| 4@

Problems

Training data

1 Combine with random ranking strategy.
1 Combine with manually designed heuristics.

Paper IV

Experimental Results

0 Evaluated in our word equation solver, Z3, cvc5, etc.

o ‘ N Average solving time
Bench| Solver i s (split number)
SAT|UNSATJUNI|CS| CU | SAT |[UNSAT| CS CU
: 5.6 6.5 5.0 5.7
S =

s Bl Il (244.8) (1085.3)] (94.4) [(126.3)

Random- 5.6 6.3 5.6 8:7
Weganki | 22 | 2= | © (198.8) | (932.6) | (137.6)|(180.5)

Al GNN- 13] 678 6.1 7.5 6.1 6.3
Desponta | 24 | V6L | © (164.7) |(1974.8)| (96.4) | (60.5)

cveh 24 952 1 0.5 0.6 0.1 0.3

73 17 960 0 8.7 0.4 1.1 0.1

Z3-Noodler| 22 939 2 5.7 0.3 4.8 0.1

Ostrich | 17 931 0 15.0 5.5 8.0 4.7

Woorpje | 23 744 0 a0 125 0.1 12.2

Paper IV

87

Answers to Research Questions

O RQI:What are good encodings of symbolic decision processes as training tasks?
I Encode the problems to classification task.
1 Collect train data from multiple sources.

88

Answers to Research Questions

O RQI:What are good encodings of symbolic decision processes as training tasks?
1 Encode the problem to classification task.
| Collect train data from multiple sources.
0 RQ2:What is the most effective format for representing formulas in deep learning?
1 The graph representation must include all syntactic elements.
"1 Use compact graph encoding (e.g., merge identical nodes) .

89

Answers to Research Questions

O RQI:What are good encodings of symbolic decision processes as training tasks?
1 Encode the problem to classification task.
1 Collect train data from multiple sources.
0O RQ2:What is the most effective format for representing formulas in deep learning?
] The graph representation must include all syntactic elements.
1 Use compact graph encoding (e.g., merge identical nodes) .
0 RQ3:Which deep learning technique is best suited for feature extraction from formulas?
1 GCN serves as baseline.

1 GAT, GIN, R-HyGNN, etc.

90

Answers to Research Questions

O RQI:What are good encodings of symbolic decision processes as training tasks?
1 Encode the problem to classification task.
1 Collect train data from multiple sources.
O RQ2:What is the most effective format for representing formulas in deep learning?
] The graph representation must include all syntactic elements.
1 Use compact graph encoding (e.g., merge identical nodes) .
0 RQ3:Which deep learning technique is best suited for feature extraction from formulas?
1 GCN serves as baseline.
1 GAT, GIN, R-HyGNN, etc.
0 RQ4:What are the methods for integrating the trained model into algorithms?
1 Cache embeddings.
1 Combine with predefined heuristics did not yield the best performance.

91

Conclusions

a A deep learning-based framework for decision problems in symbolic methods.

a Iwo instances of the framework.
1 CHC solver.
7 Word equation solver.

92

Conclusions

a A deep learning-based framework for decision problems in symbolic methods.

a Iwo instances of the framework
1 CHC solver.
7 Word equation solver.

a Our framework can easily adapt to other decision problems in symbolic methods.

a GNN is still the best option for extracting structural information in symbolic
expression.

93

Future Directions

a2 Training tasks
71 Reinforcement learning.
1 Sequential model.
= Generative model.

2 Extend to new problem domains.
I Regular expression in word equations.

7 New theories in CHCs.

a2 Simultaneously guide multiple decision processes.

94

Thank you for listening

Word Equation System

A word equation:

XabY = YbaX

where a and b are letters,

XY, and Z are variables ranging over strings of these letters.

A word equation system (conjunctive word equations):
¢ — 61/\. .o /\en’

where €; is a word equation.

XaY =YbX N XabY = YbaX

Paper III and IV

96

Motivating Examples

Prove:

Va. Lqi(x) < true A

Va. La(x) < Az > 0 A

Ve,z'. Li(z') < Ly(z) Az’ =2z —1A
Va.L3(z) < Li(z) hx <0 A

V. false < L3(x) Az =0

For Simplicity:

Cl1l:
C2:
C3:
C4 .
Cbh :

Li(x) < true

Lg(w) <—L1(:13)/\5L’ >0
Li(z") <« Ly(z) ANz’ =2z —1
Ls(z) < Li(x) ANz <0
false < L3(xz) ANz =

97

Motivating Examples (Program Verification)

Prove:

Va. Lqi(x) < true A

Va. La(x) < Az > 0 A

Ve,z'. Li(z') < Ly(z) Az’ =2z —1A
Va.L3(z) < Li(z) hx <0 A

V. false < L3(x) Az =0

98

Solving a Word Equation System

Q Split Algorithm (branching example)
1 First terms are variable and terminal

Xl

X
X|>a
X =aX'
u | =

X[<lal
X: nn

u,v,u’, v’ are terms, a is a letter, and X, X' are variables

Paper III and IV

99

Solving a Word Equation System

Q Split Algorithm (branching example)

7 First terms are variables

X

X| < Y]
Y = XX'

u =

Xl

u,v,u’, v are terms, and X,Y, X', Y’ are variables

Paper III and IV

100

0l

Symbolic Methods

Q Approaches
71 Automatic Theorem Provers (ATPs)
> An example to show why this is interesting
' Boolean Satisfiability (SAT)/Satisfiability Modulo Theories (SMT) solvers
-1 Constrained Horn Clause (CHC) solvers

Q Challenges
- Complex representation
1 Theory handling
O Scalability

102

Split Algorithm (Constructing the Proof Tree)

= YVO = XV1 =Y
0="" [NO=aV2 1=""\Vl= aV8 Z =" \Z= bV11
Z="" [Z=1bV3 = ZVA[Z= V2V5\V2= Z =" \Z= bVo 8 = ""\V8= bV10 Vi1 ="
V3 =" 5 = ""\V5= aV6 Vg =

6 = ""\V6= bV7 ‘ ‘

SAT equation

i > ©®

UNSAT equation

103

Split Algorithm (Constructing the Proof Tree)

Variable-Variable

Xab=YaZ
X=YVO0 = XV1 =Y
V0ab =aZ ab=V1aZ ab=aZ
0 =" o= aV2 e 7 = " \Z= bV11
Z=""[Z=DbV3 =ZV4A[Z=V2V5\V2=Z 8 = "" \V8= bV10 vili=""
Ygi= 5 = ""\V5= aV6

“\V6= bV7 ‘ ‘

SAT equation

gl > ©®

UNSAT equation

6

104

Split Algorithm (Constructing the Proof Tree)

SAT equation

> @

UNSAT equation

105

Split Algorithm (Constructing the Proof Tree)

Variable-Variable

Xab=YaZ

X=YVO0 = XV1 =Y
VO0ab =aZ ab=Vl1aZ ab=aZ

0="" [NO=aV2 1 = ""\V1= aV8 Iz = " \Z=bV11
b=272 V2ab=2
Z =" [Z=1bV3 = ZVA[Z= V2V5\V2= Z = \7= bV9 8 = ""\V8= bV10 Vil =""
V3 = 5 = “\V5= aV6 VD =

6 = ""\V6= bV7 ‘ .

SAT equation

a0 > ©®

UNSAT equation

106

Split Algorithm (Constructing the Proof Tree)

Variable-Variable

Xab=YaZ

X= YVO =XV1 =Y
V0ab =aZ ab=V1aZ ab=aZ

0= aV2 1=""\Vl=aV8 Z="" \Z=bV11

Variable-Letter

nno_ V3

i e Mgy =il

= ZV4[Z=V2V5\V2=Z =""\Z=bV9 8 = "" \V8= bV10 Vil ="*

" \V6= bV7 ‘ ‘

SAT equation

i <=

UNSAT equation

SAT 6

107

Split Algorithm (A Path Leading to SAT)

" bl

=Y
Variable-Letter
¥t
— un ¥ 7 — =
W ble-Letter 1 V1= aVv8 Z=bV11
V2ab = Z
e ZV4 7= vzvs V2 Z — un Lt bvg 8 — un V8= bVlO Vll — un

i i

5 = ""\V5= aV6 V9 ="

g . g <=
Ry 6 = ""\V6= bV7

SAT equation

- < (O

UNSAT equation

108

Split Algorithm (A Shortest Path Leading to SAT)

s

'
V0ab =aZ ab=V1aZ

Variable-Letter

A sy Wil i

SAT 6 = ""\V6= bV7
SAT equation
. <@
UNSAT equation

109

Split Algorithm (Proof Tree for UNSAT Problem)

e Need explore all paths to
conclude UNSAT

110

Working Pipeline (Data-driven Based Heuristic)

I_Tr;i nalg_staae ____________ @ _________________ |

| Word @ SAL ©, Model withT

| o' Lspit Aigorittm| [UNSAT Proof Tree [—220h__,j Mode With T

| Equations representations GNNs |

| Train UNKNWON /) |
raining data J

- - - - - - - - - - - T T T T T T 7T T graph T T T T T 7 .

l representations

-
Prediction stage '

T worw 6 :
| ord Lspit Algorithm—| Satisfiability |
| Equations :
I |
I

Evaluation data

e—— e _— _— e — — —

111

Graph Neural Networks (GNNSs)

e A set of fully connected neural networks
e Take graph as input, output node and graph representations
e Can capture the structural features of graph

112

Label the Training Data at a Branch Point

SAT equation

> @

UNSAT equation

113

Label the Training Data at a Branch Point

SAT equation

> @

UNSAT equation

114

Graph Representations of Word Equation
Equation: Xab =YaZ

1 O O
Equal sign Variable Terminal
: : B =]
SORED x> D X DIED
<>)
ONO.) (o) OF 10O
<D, &)
) @) @O | O @@ |®
Graph 1 Graph 2 Graph 3 Graph 4 Graph 5

115

Model Structure

Parent

V0ab = aZ

V0ab = aZ

Left child
b=27

Y

Right child

V2ab=7

Y

Classifier

MLP

<

Y

g1 v
g2 GNNs = V2

[1,0] Left child

[0,1] Right child

116

Benchmarks 1-4

1. Randomly generated SAT word equation

aksCwqgeuafhkajsh fweeta = aksfjdfbabDeuafhkajshBC Dta

117

Benchmarks 1-4

1. Randomly generated SAT word equation
2. Word equation with a particular pattern [5]

XnaanXn_len_g cee le = a,Xan_an_len_zb ce lelea,a,

[5] Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: On solving
word equations using SAT. Reachability Problems, 93—-106. (2019)

118

Benchmarks 1-4

1. One randomly generated SAT word equation
2. One word equation with a particular pattern
3. Conjunctive word equations of Benchmark 1

kESY = WHXGE

N vZX = vtntssemtvnetm

NyffyyfEWV ff =yffyyfyXLGZfU
AN NRQxgGI = zxgggF JTK

119

Benchmarks 1-4

e

One randomly generated SAT word equation

One word equation with a particular pattern

Conjunctive word equations of Benchmark 1

QF_S, QF_SLIA, and QF_SNLIA tracks of SMT-LIB without length
constraints, regular expressions, and Boolean operators

AabecdBCefDEghF = BciabADGCFHE
abAaBabcdCdcDE = AbeFCcdbaBDcdG f g

120

Benchmarks 1-4 (Overview)

One randomly generated SAT word equation

One word equation with a particular pattern

Conjunctive word equations of Benchmark 1

QF_S, QF_SLIA, and QF_SNLIA tracks of SMT-LIB without length
constraints, regular expressions, and Boolean operators

Table 1: Number of SAT (v'), UNSAT (x), UNKNOWN (c0), and evaluation
(Eval) problems in the four benchmarks

e

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4
Total: 3000 Total: 21000 Total: 41000 Total: 2310

2000 20000 40000 1855
A Eval =T Eval 7 7 = Eval w7 et s Eval

199710 3 {1000{1293|0|18707({1000({1449|1137|37414|1000|1673|16|166| 455

121

Benchmarks 1-4 (Overview)

e

One randomly generated SAT word equation
One word equation with a particular pattern
Conjunctive word equations of Benchmark 1

QF_S, QF_SLIA, and QF_SNLIA tracks of SMT-LIB without length

constraints, regular expressions, and Boolean operators

Table 1: Number of SAT (v'), UNSAT (x), UNKNOWN (c0), and evaluation

(Eval) problems in the four benchmarks

Benchmark 1

Benchmark 2

Benchmark 3

Benchmark 4

Total: 3000 Total: 21000 Total: 41000 Total: 2310
2000 20000 40000 1855
A Eval =T Eval 7 7 = Eval w7 et s Eval

199710 3 1000

1293(0 |18707 {1000

1449(1137|37414 {1000

1673|16(166| 45

5

122

Benchmarks 1-4 (Overview)

e

One randomly generated SAT word equation
One word equation with a particular pattern
Conjunctive word equations of Benchmark 1

QF_S, QF_SLIA, and QF_SNLIA tracks of SMT-LIB without length

constraints, regular expressions, and Boolean operators

Table 1: Number of SAT (v'), UNSAT (x), UNKNOWN (c0), and evaluation

(Eval) problems in the four benchmarks

Benchmark 1

Benchmark 2

Benchmark 3

Benchmark 4

Total: 3000 Total: 21000 Total: 41000 Total: 2310
2000 20000 40000 1855
A Eval =T Eval 7 7 = Eval w7 et s Eval

199710 3 {1000

1293(0 (187071000

1449|1137|37414 {1000

1673|16[166| 455

123

Benchmarks 1-4 (Overview)

e

One randomly generated SAT word equation
One word equation with a particular pattern
Conjunctive word equations of Benchmark 1

QF_S, QF_SLIA, and QF_SNLIA tracks of SMT-LIB without length

constraints, regular expressions, and Boolean operators

Table 1: Number of SAT (v'), UNSAT (x), UNKNOWN (c0), and evaluation

(Eval) problems in the four benchmarks

Benchmark 1

Benchmark 2

Benchmark 3

Benchmark 4

Total: 3000 Total: 21000 Total: 41000 Total: 2310
2000 20000 40000 1855
—r—— Eval ———— Eval = 7 = Eval T Eval

1997101 3 {1000

1293]0 (187071000

1449|1137|37414 {1000

1673(16[166| 455

124

Experimental Results (Benchmark 1)

Number of solved Average
Bench| Solver problems solving time (split number)

SAT [UNS|UNI|CS|CU| SAT UNS CS CU

. 4.1 4.0
Fixed | 999 0 as20)| ~ O |aev.0y| O

4.2 4.1
g | Bessem |08 L 319.6)| ~) |(260.8)])

(1000 |9 7.6 7.0
saT)| ONN |99 0 (215.7) O 63| ~ O
cvch 1000 0 0.1 (-) - (-) 0.1() [-(-)
Ostrich | 918 0 204 ()| -() (196 (-)| - (-)
Woorpje | 967 0 16 | -& [05()] -
Z3 902 0 3.4 (-) (-) 24 () | - ()
Z3-Noodler| 935 0 1.9 (-) (-) 1.1 (-) (-)

125

Experimental Results (Benchmark 1)

Number of solved Average
Bench| Solver problems solving time (split number)

SAT [UNS|UNI|CS|CU| SAT UNS CS CU

. 4.1 4.0
Fixed 1999 0 as20)| ~ O |aev.0y| O

4.2 4.1
g | Heesem |08 L 319.6)| ~) |(260.8)])

(1000 |9 7.6 7.0
saT)| ONN [995 0 (215.7) O 63| ~ O
cvch 1000 0 0.1 (-) - (-) 0.1() [-(-)
Ostrich | 918 0 204 ()| -() (196 (-)| - (-)
Woorpje | 967 0 16 | -& [05()] -
Z3 902 0 3.4 (-) (-) 24 () | - ()
Z3-Noodler| 935 0 1.9 (-) (-) 1.1 (-) (-)

126

Experimental Results (Benchmark 1)

Number of solved Average
Bench| Solver problems solving time (split number)

SAT [UNS|UNI|CS|CU| SAT UNS CS CU

. 4.1 4.0
Fixed | 999 0 as20)| ~ O |aev.0y| O

4.2 4.1
g | Bessem |08 L 319.6)| ~) |(260.8)])

(1000 |9 7.6 7.0
saT)| ONN |99 0 (215.7) O 63| ~ O
cvch 1000 0 0.1 (-) - (-) 0.1() [-(-)
Ostrich | 918 0 204 ()| -() (196 (-)| - (-)
Woorpje | 967 0 16() | -6 [05(])] -()
Z3 902 0 3.4 (-) (-) 24 () | - ()
Z3-Noodler| 935 0 1.9 (-) (-) 1.1 (-) (-)

127

Experimental Results (Benchmark 1)

Number of solved Average
Bench| Solver problems solving time (split number)

SAT |{UNSJUNI|CS|CU| SAT UNS CS CU

. 4.1 4.0
Fixed 1999 0 as20)| ~ O |aev.0y| O

4.2 4.1
R e L 319.6)| ~) |(260.8)])

(1000 |9 7.6 7.0
saT)| CNN 99 0 (215.7) O 63| ~ O
cvch 1000 0 0.1 (-) - (-) 0.1() [-(-)
Ostrich | 918 0 204 ()| -() (196 (-)| - (-)
Woorpje | 967 0 16 | -& [05()] -
Z3 902 0 3.4 (-) (-) 24 () | - ()
Z3-Noodler| 935 0 1.9 (-) (-) 1.1 (-) (-)

128

Experimental Results (Benchmark 2)

Number of solved Average
Bench| Solver problems solving time (split number)

SAT [UNSJUNI|CS [CU| SAT UNS CS CU

. 132
Fixed | 33 | 0 | 10 as2)) "0 (48 (D] -0)
2 | Random | 41 | 0 | 6 ST -0 4260 - 0)

(3879.5)

pL000 1|0 [46.0
in GNN |71 | 0 |27 (1815 5)) [51(5)| - ()
total) —ves 17 [2 [4 30() | 01 () [01()]| - ()
Ostrich 14 | 43 | 44 40.7 (-)| 31.8 () | 25 () | - (-)
Woorpje | 23 | 0 | 2 383 () -() 0.1(-)| -()
Z3 6 0| 2 0.1 (-) - (-) 4.2 (-) | - ()
Z3-Noodler] 19 | 0 | O 458 ()| - (-) 4.2 (<) | - ()

129

Experimental Results (Benchmark 3)

Number of solved

Average

Bench| Solver problems solving time (split number)
'SAT [UNS|UNI[CS|[CU| SAT | UNS CS CU

. 5.2 65.8 36 | 38.3
ieedl |83 || W0 (1946.2)| (4227.0) | (57.0) |(796.6)

95 65.0 38 | 385
(18’00 Hamapm | 3% | @ | 0 (3861.8)| (4227.0) | (61.7) |(796.6)
- anN | 32 |65 | o 23|50 [2143 | 14712 | 46 | 840
total) (1471.2)| (1471.2) | (63.7) |(796.6)
cves | 32 | 943 | 2 01()] 03() [01()[03()
Ostrich | 27 (926 0O 58 () | 47 () |46 () |45 ()
Woorpje | 34 | 723 | 1 124 () | 12.3¢) | 0-1(-) [232 ()
Z3 26 (953 10 56(-) | 05C) |47 () (010
Z3-Noodler| 28 | 926 | 0 5207 (-)| 0B() | B9 (-) |01 1)

130

Experimental Results (Benchmark 4)

Number of solved

Average

Bench| Solver problems solving time (split number)
SAT [UNSJUNI|CS|CU| SAT UNS CS CU
. 9.1 17.7 9.1 5.0
Fixed |#HG| 6 |0 (105.5) |(17119.5)| (51.0) | (246)
4.9 17.9 4.9 4.4
: 4‘;5 Hpmaow |4 B D (61.3) |(17119.5)| (38.1) | (246)
: 403| 2 5.5 31.8 5.3 8.8
toltrgl) GNN |48 5 110 (118.3) | (5019.6) | (49.0) (246)
cvch 406 | 34 | O 0.1(-)| 01(-) [0.1()|0.1(-)
Ostrich | 406 | 6 | O 1.4(-) | 1.2() |14(-) [1.2 (-)
Woorpje 420 2 | O 02()] 36 () |0.2() 3 6 (-)
Z3 |420] 10 | O 0L | D) 0L 0 1)
Z3-Noodlerj420 | 35 | 1 0.1(-)| 01(-) {0.1()]0.1(-)

131

Extract train data

e Binary classification label Label Clauses
o Union 1 1] Ly () — true
o Intersection 0 [2]La(z) < Li(z)Az>0
o Single 0 3] Li(z") <« Lo(z)ANz' =z —1
1 4] Ls(x) — Li(z) ANz <0
1 5] false < L3y(z)ANx #0

132

Represent CHCs by graphs

Label Clauses
1 1| Ly(x) — true
0 2] Lo(x) — Li(x) ANz >0
0 3] Li(z') <« Ly(z) Az’ ==z —1
1 4| Ls(x) — Li(z)ANx <0
1 5| false < Ly(z) Nz #0

true

1]

I:I Node
<> Hyper-edge

133

Represent CHCs by graphs

I:I Node
Label Clauses true = e
1 1] Lq(x) — true
0 [2]Lsy(z) <« Li(z)Az>0 <>~[1]
0 3] Li(z') <« La(z)Ax' =z -1
1[4 Ls(z) < Li(@)Az<0 Ly A\t
1 5] false «— Ls(z) Nz #0 <> 2] g

134

Represent CHCs by graphs

Label Clauses

1 1] Lqi(x — true

3] Li(z') <« La(z)Ax' =z -1

1(2)

2] Ly(z) « Li(z) Az >0
(l
)

== O O

Z

)
(2)
4] Ls(x — Li(z)ANx <0
5] false +— L3(x)

135

Represent CHCs by graphs

I:I Node
Label Clauses frie 1 o e
1 1] Lq(x) — true
0 [2] Lz(iB) <—L1()/\CB>O
0 3] Li(z') <« La(z)Ax' =z -1
1 4] Ls(x) — Li(z)ANx <0
1 5] false < Ly(z) Nz #0

136

MUSHyperNet Framework (GNN model):

Embedded

nodes

Lox | [ox] [ex] ex][]

A,EK

@—»ReLU—)

o

Concatenated
neighbiors
_ W1
X
— MLPs
X (NNs)
X Wy
= | MLPs
S TLL(NNs)
X
w

137

MUSHyperNet Framework (GNN model):

Embedded Concatenated
nodes neighbiors

o ?:I\JI;\IF;S) %ReLU»@

[ex] x| 1x|

Lox | [px] [ex][2x]| 1x]

138

MUSHyperNet Framework (GNN model):

Embedded Concatenated

nodes neighbiors
T Wl
X P
| MLPs E
N\ = (NNs)
® ® i 2
- @—ReLU—»E,:
@ & =
e o W,
@ 00 X <[MLPs o
S/ B ST (NNs) &
5 &

139

MUSHyperNet Framework (GNN model):

GNN Layer 1——»

e

X

hy)
9
®)

~

by
®,

140

MUSHyperNet Framework (GNN model):

Embedded Concatenated
nodes neighbiors

e =

== MLPs
(NNs) =
@ z R
A

Y

~

I

@-ReLU—»E;,

Wy
MLPs
(NNs)

€
I

1Y

-
Y

G [
vl

Y

g
I
€
I

141

MUSHyperNet Framework (GNN model):

\

—GNN Layer 1> —GNN Layer 2—»,

® p
w‘g
CEY
1
T A
@~ P
e ¢

)
SR
(k)

/

Ly

142

Use predicted MUSes to guide the algorithms

Algorithm Name
e Prioritize CHCs by using predicted scores of CHCs pxed
CEGAR Score

o Use scores alone —E

R-Plus

SymEx

o Combine with original prioritizing scores “SPhs
m Add/subtract normalized or ranked scores with > Minus
coefficient =
Rank

R-Minus
Random
m Randomly shift to MUS and original score CRePhs

Two-queue

143

Experimental results

e Benchmarks from CHC-COMP

Linear LIA problems

Non-linear LIA problems

8705

8425

Benchmarks for training

Holdout set

Benchmarks for training |Holdout set

7834 (90%)

871 (10%)

7579 (90%) 846 (10%)

UNSAT SAT

T/O

Eval.

N/A

UNSAT |SAT|T/O|Eval.| N/A

1585 4004

2245

383

488

3315 4010(254 | 488 | 358

Train

Valid|[N/A

782

87 | 716

Train

Valid[N/A

1617

180 {1518

144

Experimental results (Improved percentage)

MUS Best ranking function (improvement in %)
data set Number of Solved Problems Average Time

(best count) "1 SAT UNSAT AllL Common SAT UNSAT
Union R-Plus R-Plus R-Minus R-Plus S-Plus S-Minus Rank

Benchmark
Algorithm

Linear (0) (1.4%) (2.4%) (1.0%) (1.3%) (19.1%) (46.5%) (31.1%)
CEGAR Single Rank R-Plus Rank R-Plus S-Plus R-Minus Rank
(3) (3.6%) (4.0%) (82%) (1.9%) (26.6%) (57.9%) (36.3%)

Intersection R-Plus S-Plus R-Plus R-Plus S-Plus R-Minus S-Plus
(4) (41%) (0.8%) (9.3%) (3.1%) (27.6%) (45.0%) (0.0%)
Union Two-Q S-Plus* Random Two-QQ R-Minus R-Minus S-Plus

Linear (4) (1.0%) (0.0%) (2.0%) (0.9%) (12.7%) (30.2%) (26.5%)
SymEx Single S-Minus* S-Plus* Random Random S-Plus Random S-Plus
(3) (0.5%) (0.0%) (2.0%) (0.8%) (12.9%) (28.4%) (17.6%)

Intersection S-Plus* S-Plus¥ S-Plus* S-Plus Score Random R-Plus
5) (1.0%) (0.0%) (2.0%) (1.3%) (9.5%) (28.4%) (35.8%)

145

Experimental results (Improved percentage)

MUS Best ranking function (improvement in %)
Benchmark -
Al data set Number of Solved Problems Average Time
(best count) “pypa] SAT UNSAT Al Common SAT UNSAT
N Union S-Plus S-Plus S-Plus* S-Plus R-Minus Rank S-Plus
LW (7) (0.5%) (0.8%) (0.0%) (7.1%) (20.8%) (53.5%) (19.4%)
Linear
CEGAR Single R-Plus R-Plus R-Plus* R-Plus S-Plus R-Minus R-Minus
(1) (0.2%) (0.4%) (0.0%) (6.6%) (18.4%) (52.8%) (14.2%)
Intersection R-Plus* S-Plus S-Plus* R-Plus R-Plus Rank S-Plus
(1) (0.0%) (0.5%) _ (0.0%) (5.9%) (20.3%) (45.8%) (16.8%)
i Union Two-Q S-Minus* Random Two-Q R-Minus Score R-Plus
o (6) (6.1%) (1.6%) (12.3%) (13.3%) (7.3%) (5.1%) (19.9%)
Linear
SymEx Single Two-Q Score Two-Q Two-Q Rank R-Minus Two-Q

(3) (6.1%) (1.6%) (12.9%) (12.4%) (-2.2%) (0.2%) (11.2%)
Intersection Two-Q S-Plus Two-Q Two-Q S-Minus Two-Q S-Plus
(3) (6.1%) (1.6%) (12.9%) (12.7%) (0.6%) 1.7%) (5.4%)

146

Visualize CHCs with dependency graph

< true Start
— Ll(ill) ANx >0 ?[1] true
— Ly(x) Nz =z —1 B8]z’ =z —1
— Li(z)ANx <0 Ly
— L3(z) ANz #0 [2]W<0
Lz L3
\ 5] 2 # 0

false

147

MUSes of CHCs

1] Ly (x — true

{[1], [4], [5]} is the only MUSes

148

MUSes of CHCs

1] Ly () — true

[2] LQ(ZU) — Ll(ib) ANx >0

8] Li(z') « Lo(z)ANz' =z —1
4] Ls(x) — Li(z) ANz <0

5| false «— Lay(z) Nz #0

e Algorithms
o Counterexample-guided
abstraction refinement (CEGAR)
o Symbolic execution (Symex)

149

MUSes of CHCs

Score
0.8 [1] Li(z) — true
0.2 (2] La(z) — Li(x) ANz >0
0.1 [3]Li(z") <+ Ly(z)hnz'=z-1
0.75 [4] Ls(x) — Li(z) Nz <0
0.6 [5] false «— Lay(z) Nz #0
e Algorithms

o Counterexample-guided
abstraction refinement (CEGAR)
o Symbolic execution (Symex)

150

Motivation & Background Framework overview

Framework overview

Extract program features by graph neural networks from CHC'’s graph

representation

Program

CHCs

Graph
representations for
CHCs

GNN
model

Proxy
tasks

151

Framework overview
o

Five proxy tasks from simple to difficult

Predict if an graph node is an argument of relation symbol
Predict the number of occurrence of the relation symbols in all clauses
Predict if a relation symbol is in a cycle

Predict the existence of argument bound

Predict the clause membership in all/some minimal unsat cores

start ()) () () o O——@ error

als w0~

152

Framework overview
o

Five proxy tasks from simple to difficult

Predict if an graph node is an argument of relation symbol
Predict the number of occurrence of the relation symbols in all clauses
Predict if a relation symbol is in a cycle

Predict the existence of argument bound

Predict the clause membership in all/some minimal unsat cores

als w0~

Clause 1 Clause 2 Clause 4

start ﬁ—» - O—— @ error

Clause 3
153

Framework overview
o

Five proxy tasks from simple to difficult

Predict if an graph node is an argument of relation symbol
Predict the number of occurrence of the relation symbols in all clauses
Predict if a relation symbol is in a cycle

Predict the existence of argument bound

Predict the clause membership in all/some minimal unsat cores

als w0~

Clause 1 Clause 2 Clause 4

start Aﬁ:‘i—' o O—— @ error

Clause 3
154

CHC graph representations

Framework overview

e Two graph representations for CHCs

Program

CHCs

N

NN

" Graph
representations for
\CHCS

GNN
model

N~

Tasks

155

Constraint graph (CG)

CHC graph representations

CHC: L(z,y,n) < L(z',y', n YAz #0ANz =2 —1Ay=9 -1

Predicate layer
L_
781 ‘

clause;

Constraint
st

layer
C1 0

156

CHC graph representations

Control- and data-
flow hypergraph

(C D H G) uarded CFHE Claus CFHE g]_
:.U,
CHiE rSQs—— >

RSA
LI «— y l
D) l&«—RSA 7 rsas

157

Framework overview

Relational Hypergraph Neural Network (R-HyGNN)

Program

CHCs

Graph
representations for
CHCs

R-HyGNN

w

Tasks

158

R-HyGNN

Training model

Embedding layer R-HyGNN Fully connected NNs
g lay y
edge_type 1
/ \ (position_1)
—_p- B I O 7 + Predicted
. ® value
¥ Y. / edge_type_1 ReLU = —>] > ‘Q
@ ® />< N (position_2)
[1.2][1,3][1 4]
[1,5][6,1][7,1] = =

V'
Lx

-
-

159

R-HyGNN

Training model

Embedding layer R-HyGNN Fully connected NNs
glay y
l edge_type 1
/ \ (position_1)
® @ B o o 0 + Predicted
. ® value
0 N w
NS / edge_type_1 ﬂ — > ;Q
° © /><) (position_2) ReLU i
[1,2]01,3][1,4]
[1,5][6,1][7,1] = =

V'
Lx

-
-

160

R-HyGNN

Training model

Embedding layer R-HyGNN Fully connected NNs
g lay y
edge_type 1
/ \ (position_1)
—_p- B I O 7 + Predicted
. ® value
¥ N 4 edge_type 1 ReLU = —> > ‘Q
@ ® /><) (position_2)
[1.2][1,3][1 4]
[1,5][6,1][7,1] =
L

-
-

start -0 é Q o O——@ error

161

R-HyGNN

°
Training model
Embedding layer R-HyGNN Fully connected NNs
g lay y
edge_type 1
/ \ (position_1)
—_p- B I O 7 + Predicted
. ® value
¥ N 4 edge_type 1 ReLU = —> > ‘Q
@ ® />< N (position_2)
[1,2]01,3](1,4]
[1,5]6,1][7,1] =
B

-
-

start

- O——@ error

162

R-HyGNN

Training model

Embedding layer R-HyGNN Fully connected NNs
g lay y
edge_type 1
/ \ (position_1)
—_p- B I O 7 + Predicted
¢ ® value
X Y. Y edge_type 1 ReLU 5.: —> > ‘Q
@ ® />< N (position_2)
[1,2](1,3][1.,4]
[1,5]16,1][7,1] =
£
\ J
start () () () o O——@ error

163

R-HyGNN

Training model

Embedding layer R-HyGNN Fully connected NNs
edge_type 1
l / \ (position_1)
® @ B + Predicted
N NP value
0 N w
NS / edge_type_1 ﬂ — > ;Q
° © /><) (position_2) ReLU i
[1,2][1,3][1.,4]
[1,5][6,11[7,1] =
C
2 %
start () é O o O—— @ error

164

Framework overview

Program

CHCs

Graph
representations for
CHCs

GNN
model

Proxy \

N>

Proxy tasks

165

Evaluation on five proxy tasks

e Dominate distribution

CG CDHG
Task | Files + - Acc. Dom. | + - Acc. Dom.
1 1121 33863 ?835971 100% | 95.1% 132598 281445 99.9% | 72.8%
3 1115 33?4 '1743133 96.1% | 70.1% ?;62 2223 99.6% | 50.7%
4 (a) . ;gggs ifg;; 91.2% | 79.7% 32225 1(53230 94.3% | 75.2%
4 (b) ;gg?g 2259352 91.4% || 74.8% g;?gg 33224 94.3% | 67.8%
5(a) | 386 : (5)38 ??;3 95.0% | 84.7% 1 ;?0 5326 96.9% | 86.4%
5(b) | 383 2(2)30 giiS 84.6% || 53.1% ;;23 32161 90.6% | 54.8%

Proxy tasks

166

Proxy tasks
[J

Evaluation on five proxy tasks

e Accuracy is higher than dominate distribution

T CDHG
Task | Files P + - Acc. Dom. | + - Acc. Dom.
1 1121 = 33863 ? s3e57] 100% | 95.1% 132598 (3)] 999% | 72.8%
3 115 |- 3(2)?4 ;Zg - 96.1% | 70.1% ?262 22 5 99:6% | 50.7%
4 (a) . . ;_;gzs ifgg —] 91.2% | 79.7% 32225 fggz 5] 943% | 75.2%
4 (b) h ;gg?g 223;] 914% | 748% 2}?29 g;gg | 94.3% | 61.8%
5(a) | 386 — :gjs ??; 5 95.0% | 84.7% E?O ;gg —— 969% | 86.4%
5(b) | 383 |— zg;o gfg - 84.6% | 53.1% 2223 :g; —— 90.6% | 54.8%

167

Proxy tasks
[J

Evaluation on five proxy tasks (Task 5 results)

e Task 5: Predict the clause membership in (a) some and (b) all of the
minimal unsat cores
e Task 5 (a) 1155, 386, 386 problems for train, valid, and test respectively

T CDHG
Task | Files P + - Acc. Dom. | + - Acc. Dom.
1 1121 = 33863 ? sego] 100% | 951% 132598 (3)] 999% | 72.8%
3 115 |- 3(2)?4 ;Z g 5 96.1% | 70.1% ?262 Zg 5 99:6% | 50.7%
4 (a) . s ggzs ifgg — 91.2% | 79.7% ;gzgs ngz 5] 943% | 75.2%
4 (b) h ;gg?g ;‘Zzg S 914% | 74.8% ‘31;‘? 29 g;gg | 94.3% | 61.8%
5(a) | 386 — 1238 5?16 3 95.0% | 84.7% 1;?0 ;gg —— 969% | 86.4%
5(b) | 383 |— 2(2)30 iii - 84.6% | 53.1% 32‘23 3221 90.6% | 54.8%

168

Proxy tasks
[]

Predict the clause membership in minimal unsat cores
e Simple patterns
o Clauses close to the assertions are likely in the minimal unsat cores
e Intricate patterns
o Perfectly predict the clause membership of minimal unsat cores in the
case that contain 290 clauses.

Clause 1 Clause 2 Clause 4

start Aﬁ:‘;—» - O—— @ error

Clause 3

169

Proxy tasks
([J

Predict the minimal unsatisfiable cores
e Simple patterns
o Clauses close to the assertions are likely in the minimal unsatisfiable
cores
e Intricate patterns
o In the verification problem that contain 290 clauses, the model can
perfectly predict the clause membership in minimal unsat cores.

170

Control- and data-
flow hypergraph

(CDHG)

CHC graph representations

Horn clause: L(z,y,n) < L'(z',y/,n') Az #0Az=2" —1Ay=9y —1

Step 1: L(z,y,n

’L/(,?

L

r$s1

l—RSA Tsa

[€——RSA
—rsa

Yy, n
1

7Sas

rsa
x' U

T892

Step2:z # 0

a7
rSa|

A A,

D1

Guard

gl

Step 3: L(z,y,n) «

m(l_
T8y ‘\RSA

FE

\

CFHE rs a3

arded CFHE Clausg I CFHE.

',y ,n /\z;éO

RSA ’rsa,1

7‘50,2

Guar
A/

gl

r3a4

rsa5

RSA
7'32 [€——RSA. T’S(Iﬁ

ﬂ

Q
\;@}

Stepdiz=a —1Ay=9y —1

A

op2

x i
A, A, A

op3

T81

I
CFHE

arded CFHE Claus:

CFHE
1

LI

TS89

Step 5: L(z,y,n) «+ L'(z',y/,n') Az #0Az=2" —1Ay=9y -1
DFHE,

171

Constraint
graph (CG)

CHC graph representations

CHC: L(z,y,n) « L(z',y', ")Nz #0Az=2" —1Ay=9 -1

Step 1: L(z,y,n) + L(z',y,n’)

z,z'
T‘S(ll

Step 2: L:cy, z', o ,n')

: &\Q

v,y clause;
\Q = /Q

Step 4: L(z,y,n) + L(z',y/,n' YAz #0Az =2 —1Ay=9y — 1

Predicate layer

Clause layer

clause;

Step3:z£0Az=2 —1Ay=9y -1

ClN-

ERCN

o1

Constraint
layer

172

Proxy tasks
[]

Predict the minimum unsatisfiable cores

e Three minimum unsatisfiable cores

guarded CFHE Clause 0

guarded CFHE Clause 5

guarded CFHE Clause 3

173

sT2 AST1

guard

criE

FIIE

CFHE

FHE

frasaz

Technique details

(336033 Jammyo

DFHE

Guarded DFHE Clause 2

T main@.rph_1_1:11 [3>

CFHE

‘guardod CFHE Clausa T

e

Guarded DFHE Clause 2

DFHE

pruz

DFHE

‘uardod DFHE Clauza T

174

R-HyGNN

The updating rule for node representation in time step ¢ :

hy = ReLU (Y, cp 2 pep, 2ocemr Wiy - llhe " [u € €]),

where||{-} denotes concatenation of all elements in a set,

r € R={r; |1 € N} is the set of edge types (relations),

p € P. = {p; | j € N} is the set of node positions under edge
type r, nyp denotes learnable parameters when the node

is in thepth position with edge type r, and e € E)'? is the set
of hyperedges of type r in the graph in which node v appears
in position p, whereeis a list of nodes.

R-HyGNN
[]

edge_type_0 edge_type_0
(position_1) (self-loop)

&

JH

edge_type_1

2 B (position_1) !

_— — — er,pl .‘ []

= ore. = = i edge_type 1

WS (binary edge)
% edge_type 1 ® @
» ‘ (position_2) @

o |N

= — er,pZ 0 @
= @ ®

[1,2][1,3][1,4]
[1,5](6,1][7,1]

RelLU

edge_type 2
(position_1)

* T@T{

edge_type_2

i _(position_2) edge_type_2

L T (ternary edge)

EWTZPZ /

T : | O,

; N ® ‘
""""""""""""" edge_type_ 2 ‘ @

position 3 \
©® @

[1,7,8][9,10,1]

175

Motivation & Background
[J

Solving CHCs by counter-example guided abstraction
refinement (CEGAR) based model checking

start O O

O

start O O

O

- O i error

(Initial)
abstraction

:

SAT

Horn solver SAFE

UNSAT

2 Feasibl
Counter-ex |Feasible UNSAFE
ample

Infeasible
Refine

abstraction

176

Motivation & Background
[J

Solving CHCs by counter-example guided abstraction
refinement (CEGAR) based model checking

(Initial)
abstraction

start ——(O——(O—0O—— - l

: SAT

i Horn solver SAFE
stat ——(O)—(O)r—0O—— - O error

UNSAT

Counter-ex |Feasible
Abstraction O O ample

Infeasible
A

UNSAFE

Refine
abstraction

177

Motivation & Background
[J

Solving CHCs by counter-example guided abstraction
refinement (CEGAR) based model checking

(Initial)
abstraction
stat —(O—O—0O —— - O_f I
: SAT
i Horn solver SAFE
stat —(O)—(O)0—0O—— - O B
UNSAT
UNSAT with a Counter-ex |Feasble |\ carp
Abstraction O O infeasible ample
counter-example Infeasible
Refine
abstraction

178

Motivation & Background
[J

Solving CHCs by counter-example guided abstraction
refinement (CEGAR) based model checking

(Initial)
abstraction
stat —(O)—(O)—(O — - I
: SAT
i Horn solver SAFE
stat —(O)>—O—0O—— - O error
UNSAT
. Counter-ex |Feasible
New ~ D) SAT with new ample UNSAFE
abstraction ~ refinement
Infeasible
Refine

abstraction

179

Motivation & Background
[J

Solving CHCs by counter-example guided abstraction
refinement (CEGAR) based model checking

(Initial)
abstraction

stat —(O—O—0O —— - I
: SAT
i Horn solver SAFE
stat —(O)—O—0O— - O error

UNSAT

Counter-ex |Feasible

New ~ SAT with new Sl
abstraction ~ o refinement P

UNSAFE

Infeasible
/‘V\
/ Refine

abstraction

180

Motivating Examples (Theorem Proving)
Prove : Vz. P(z) — Q(x) AVz.Q(z) — R(xz) A P(a) = R(a)

F1:Vz. P(z) — Q(z)
F2:Vz.Q(z) — R(x) Proof rules
F3: P(a)

Goal: R(a)

18l

Motivating Examples (Theorem Proving)
Prove : Vz. P(z) — Q(x) AVz.Q(z) — R(xz) A P(a) = R(a)

F1:Vz. P(x) — Q(x)

Proof rules

F2:Ve.Q(z) — R()
F3: P(a) F4: P(a) — Q(a)
Goal: R(a)

182

Motivating Examples (Theorem Proving)
Prove : Vz. P(z) — Q(x) AVz.Q(z) — R(xz) A P(a) = R(a)

F1:Vz. P(z) — Q(z)

F2:Vz.Q(z) — R(x) Proof rules
F3: P(a)
F4: P(a) — Q(a)

Goal: R(a)

183

Guide CHC Solver (Example)

0 Rank clauses before solving

C1:
C2:
C3:
C4 .
C5:

[6] H. Hojjat and P. Ruemmer, “The ELDARICA Horn solver,” 2018.

&~

1(@)
Ly(x)
L1 (CB,
3(z)
false

[\

t~

)

Paper I and II

184

Guide CHC Solver (Example)

0 Rank clauses before solving

C1: Ll(a:)
C2: L2(ZE)
C3: Li(z)
C4: Ls(x) C6: L3« truenNx <0
C5: false

[6] H. Hojjat and P. Ruemmer, “The ELDARICA Horn solver,” 2018. .

Paper I and II

Guide CHC Solver (Example)

0 Rank clauses before solving

C1: Ll(a:)
C2: L2(ZE)
C3: Ll(ZB,)
C4: L3({E)
C5: false

[6] H. Hojjat and P. Ruemmer, “The ELDARICA Horn solver,” 2018. o6

Paper I and II

Guide CHC Solver (Example)

. Proof rules
0 Rank clauses before solving

C1: Ll(a:)
C2: Lz(ZL’)
C3: Ll(ZB,)
C4: L3({E)
C5: false

[6] H. Hojjat and P. Ruemmer, “The ELDARICA Horn solver,” 2018. .

Paper I and II

